In INs study, the fabrication of multilayer AI(Zn)-A1203 with different volume fractions of A1203 was investigated. A1 and ZnO powders were milled by a plaaetaxy ball mill, after which five-layer functionally graded...In INs study, the fabrication of multilayer AI(Zn)-A1203 with different volume fractions of A1203 was investigated. A1 and ZnO powders were milled by a plaaetaxy ball mill, after which five-layer functionally graded samples were produced flarough hot pressing at 580~C and 90 MPa pressure for 30 min. Formation of reinforcing A1203 particles occurred in the aluminum matrix via the aluminolkermic reaction. Determination of the ignition temperature of the aluminolkennic reaction was accomplished using differential lkermal and lkermo- gravimelric amlyses. Scaaming electron microscopy, energy dispersive spectroscopy, and X-ray diffractometery amlyses were utilized to characterize the specimens. The lkermal amlysis results showed that the ignition temperatures for the aluminolkennic reaction of layers with the highest and lowest ZnO contents were 667 and 670~C, respectively. Microslxuctural observation and chemical amlysis confirmed the fa- brication of AI(Zn)-A1203 functionally graded materials composites with precipitation of additional Zn in the matrix. Moreover, nearly dense functionally graded samples demonstrated minimum and maximum hacdness values of HV 75 and HV 130, respectively.展开更多
This paper is concerned with the determination of thermoelastic displacement, stress and temperature in a functionally graded spherically isotropic infinite elastic medium having a spherical cavity, in the context of ...This paper is concerned with the determination of thermoelastic displacement, stress and temperature in a functionally graded spherically isotropic infinite elastic medium having a spherical cavity, in the context of the linear theory of generalized thermoelasticity with two relaxation time parameters (Green and Lindsay theory). The surface of cavity is stress-free and is subjected to a time-dependent thermal shock. The basic equations have been written in the form of a vector-matrix differential equation in the Laplace transform domain, which is then solved by an eigenvalue approach. Numerical inversion of the transforms is carried out using the Bellman method. Displacement, stress and temperature are computed and presented graphically. It is found that variation in the thermo-physical properties of a material strongly influences the response to loading. A comparative study with a corresponding homogeneous material is also made.展开更多
文摘In INs study, the fabrication of multilayer AI(Zn)-A1203 with different volume fractions of A1203 was investigated. A1 and ZnO powders were milled by a plaaetaxy ball mill, after which five-layer functionally graded samples were produced flarough hot pressing at 580~C and 90 MPa pressure for 30 min. Formation of reinforcing A1203 particles occurred in the aluminum matrix via the aluminolkermic reaction. Determination of the ignition temperature of the aluminolkennic reaction was accomplished using differential lkermal and lkermo- gravimelric amlyses. Scaaming electron microscopy, energy dispersive spectroscopy, and X-ray diffractometery amlyses were utilized to characterize the specimens. The lkermal amlysis results showed that the ignition temperatures for the aluminolkennic reaction of layers with the highest and lowest ZnO contents were 667 and 670~C, respectively. Microslxuctural observation and chemical amlysis confirmed the fa- brication of AI(Zn)-A1203 functionally graded materials composites with precipitation of additional Zn in the matrix. Moreover, nearly dense functionally graded samples demonstrated minimum and maximum hacdness values of HV 75 and HV 130, respectively.
文摘This paper is concerned with the determination of thermoelastic displacement, stress and temperature in a functionally graded spherically isotropic infinite elastic medium having a spherical cavity, in the context of the linear theory of generalized thermoelasticity with two relaxation time parameters (Green and Lindsay theory). The surface of cavity is stress-free and is subjected to a time-dependent thermal shock. The basic equations have been written in the form of a vector-matrix differential equation in the Laplace transform domain, which is then solved by an eigenvalue approach. Numerical inversion of the transforms is carried out using the Bellman method. Displacement, stress and temperature are computed and presented graphically. It is found that variation in the thermo-physical properties of a material strongly influences the response to loading. A comparative study with a corresponding homogeneous material is also made.