This paper studies the problem of linear matrix inequality (LMI) approach to robust stability analysis for stochastic neural networks with a time-varying delay. By developing a delay decomposition approach, the info...This paper studies the problem of linear matrix inequality (LMI) approach to robust stability analysis for stochastic neural networks with a time-varying delay. By developing a delay decomposition approach, the information of the delayed plant states can be taken into full consideration. Based on the new Lyapunov-Krasovskii functional, some inequality techniques and stochastic stability theory, new delay-dependent stability criteria are obtained in terms of LMIs. The proposed results prove the less conservatism, which are realized by choosing new Lyapunov matrices in the decomposed integral intervals. Finally, numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed LMI method.展开更多
The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian ...The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian positive definite matrix and parameters s,t>0. Based on the matrix geometry theory, relevant matrix inequality and linear algebra technology, according to the different value ranges of the parameters s,t, the existence intervals of the Hermitian positive definite solution and the necessary conditions for equation solvability are presented, respectively. Comparing the existing correlation results, the proposed upper and lower bounds of the Hermitian positive definite solution are more accurate and applicable.展开更多
The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain syst...The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain systems are developed with the benefit of the scalar multi-convex function. To be convenient for applications, such conditions are simplified into new linear matrix inequality (LMI) conditions, which can be solved by the powerful LMI toolbox. Numerical examples are provided to indicate that this new approach is less conservative than previous results for Hurwitz stability, Schur stability and D-stability of uncertain systems under certain circumstances.展开更多
In this paper, we address the stabilization problem for linear periodically time-varying switched systems. Using discretization technique, we derive new conditions for the global stabilizability in terms of the soluti...In this paper, we address the stabilization problem for linear periodically time-varying switched systems. Using discretization technique, we derive new conditions for the global stabilizability in terms of the solution of matrix inequalities. An algorithm for finding stabilizing controller and switching strategy is presented.展开更多
Necessary and suffcient conditions for the existence of a Lyapunov function in the Lur ’ e form to guarantee the absolute stability of Lur’ e control systems with multiple non-linearities are discussed in this paper...Necessary and suffcient conditions for the existence of a Lyapunov function in the Lur ’ e form to guarantee the absolute stability of Lur’ e control systems with multiple non-linearities are discussed in this paper. It simplifies the existence problem to one of solving a set of linear matrix inequalities (LMIs). If those LMIs are feasible, free parameters in the Lyapunov function, such as the positive definite matrix and the coefficients of the integral terms, are given by the solution of the LMIs. Otherwise, this Lyapunov function does not exist. Some sufficient conditions are also obtained for the robust absolute stability of uncertain systems. A numerical example is provided to demonstrate the effectiveness of the proposed method.展开更多
This paper considers a problem of unsupervised spectral unmixing of hyperspectral data. Based on the Linear Mixing Model ( LMM), a new method under the framework of nonnegative matrix fac- torization (NMF) is prop...This paper considers a problem of unsupervised spectral unmixing of hyperspectral data. Based on the Linear Mixing Model ( LMM), a new method under the framework of nonnegative matrix fac- torization (NMF) is proposed, namely minimum distance constrained nonnegative matrix factoriza- tion (MDC-NMF). In this paper, firstly, a new regularization term, called endmember distance (ED) is considered, which is defined as the sum of the squared Euclidean distances from each end- member to their geometric center. Compared with the simplex volume, ED has better optimization properties and is conceptually intuitive. Secondly, a projected gradient (PG) scheme is adopted, and by the virtue of ED, in this scheme the optimal step size along the feasible descent direction can be calculated easily at each iteration. Thirdly, a finite step ( no more than the number of endmem- bers) terminated algorithm is used to project a point on the canonical simplex, by which the abun- dance nonnegative constraint and abundance sum-to-one constraint can be accurately satisfied in a light amount of computation. The experimental results, based on a set of synthetic data and real da- ta, demonstrate that, in the same running time, MDC-NMF outperforms several other similar meth- ods proposed recently.展开更多
The separation of the Lyapunov matrices and system matrices plays an important role when one uses parameter-dependent Lyapunov functional handling systems with polytopic type uncertainties. The delay-dependent robust ...The separation of the Lyapunov matrices and system matrices plays an important role when one uses parameter-dependent Lyapunov functional handling systems with polytopic type uncertainties. The delay-dependent robust stability problem for systems with polytopic type uncertainties is discussed by using parameter-dependent Lyapunov functional. The derivative term in the derivative of Lyapunov functional is reserved and the free weighting matrices are employed to express the relationship between die terms in the system equation such that the Lyapunov matrices are not involved in any product terms with the system matrices. In addition, the relationships between the terms in the Leibniz Newton formula are also described by some free weighting matrices and some delay-dependent stability conditions are derived. Numerical examples demonstrate that the proposed criteria are more effective than the previous results.展开更多
An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local ...An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local model. Thus, the stability analysis method of the homogeneous fuzzy system can be used for reference. Stability conditions are derived in terms of linear matrix inequalities based on the fuzzy Lyapunov functions and the modified common Lyapunov functions, respectively. The results demonstrate that the stability result based on the fuzzy Lyapunov functions is less conservative than that based on the modified common Lyapunov functions via numerical examples. Compared with the method which does not expand the consequent part, the proposed method is simpler but its feasible region is reduced. Finally, in order to expand the application of the fuzzy Lyapunov functions, the piecewise fuzzy Lyapunov function is proposed, which can be used to analyze the stability for triangular or trapezoidal membership functions and obtain the stability conditions. A numerical example validates the effectiveness of the proposed approach.展开更多
The problem of robust L 1 filtering with pole constraint in a disk for linear continuous polytopic uncertain systems is discussed. The attention is focused on design a linear asymptotically stable filter such that th...The problem of robust L 1 filtering with pole constraint in a disk for linear continuous polytopic uncertain systems is discussed. The attention is focused on design a linear asymptotically stable filter such that the filtering error system remains robustly stable, and has a L 1 performance constraint and pole constraint in a disk. The new robust L 1 performance criteria and regional pole placement condition are obtained via parameter-dependent Lyapunov functions method. Upon the proposed multiobjective performance criteria and by means of LMI technique, both full-order and reduced-order robust L 1 filter with suitable dynamic behavior can be obtained from the solution of convex optimization problems. Compared with earlier result in the quadratic framework, this approach turns out to be less conservative. The efficiency of the proposed technique is demonstrated by a numerical example.展开更多
Addresses the design problems of robust L2-L∞ filters with pole constraint in a disk for uncertain continuous-time linear systems. The uncertain parameters are assumed to belong to convex bounded domains. The aim is ...Addresses the design problems of robust L2-L∞ filters with pole constraint in a disk for uncertain continuous-time linear systems. The uncertain parameters are assumed to belong to convex bounded domains. The aim is to determine a stable linear filter such that the filtering error system possesses a prescribed L2-L∞ noise attenuation level and expected poles location. The filtering strategies are based on parameter-dependent Lyapunov stability results to derive new robust L2-L∞ performance criteria and the regional pole placement conditions. From the proposed multi-objective performance criteria, we derive sufficient conditions for the existence of robust L2-L∞ filters with pole constraint in a disk, and cast the filter design into a convex optimization problem subject to a set of linear matrix inequality constraints. This filtering method exhibits less conservativeness than previous results in the quadratic framework. The advantages of the filter design procedures are demonstrated by means of numerical examples.展开更多
Based on a piecewise quadratic lyapunov function (PQLF), this paper presents stochastic stability analysis and synthesis methods for ItO and discrete T-S fuzzy bilinear stochastic systems. Two improved stochastic st...Based on a piecewise quadratic lyapunov function (PQLF), this paper presents stochastic stability analysis and synthesis methods for ItO and discrete T-S fuzzy bilinear stochastic systems. Two improved stochastic stability conditions have been established in terms of linear matrix inequalities (LMIs). It is shown that the stability in the mean square for T-S fuzzy bilinear stochastic systems can be established if a PQLF can be constructed. Considering the established stability criterion, the controller can be designed by solving a set of (LMIs), and the closed loop system is asymptotically stable in the mean square. Two illustrative examples are provided to demonstrate the effectiveness of the results proposed in this paper.展开更多
We consider quadratic stabilization for a class of switched systems which are composed of a finite set of continuoustime linear subsystems with norm bounded uncertainties. Under the assumption that there is no single ...We consider quadratic stabilization for a class of switched systems which are composed of a finite set of continuoustime linear subsystems with norm bounded uncertainties. Under the assumption that there is no single quadratically stable subsystem, if a convex combination of subsystems is quadratically stable, then we propose a state-dependent switching law, based on the convex combination of subsystems, such that the entire switched linear system is quadratically stable. When the state information is not available, we extend the discussion to designing an outputdependent switching law by constructing a robust Luenberger observer for each subsystem.展开更多
The robust stability and robust sliding mode control problems are studied for a class of linear distributed time-delay systems with polytopic-type uncertainties by applying the parameter-dependent Lyapunov functional ...The robust stability and robust sliding mode control problems are studied for a class of linear distributed time-delay systems with polytopic-type uncertainties by applying the parameter-dependent Lyapunov functional approach combining with a new method of introducing some relaxation matrices and tuning parameters, which can be chosen properly to lead to a less conservative result. First, a sufficient condition is proposed for robust stability of the autonomic system; next, the sufficient conditions of the robust stabilization controller and the existence condition of sliding mode are developed. The results are given in terms of linear matrix inequalities (LMIs), which can be solved via efficient interior-point algorithms. A numerical example is presented to illustrate the feasibility and advantages of the proposed design scheme.展开更多
In this paper, a novel non-monotonic Lyapunov-Krasovskii functional approach is proposed to deal with the stability analysis and stabilization problem of linear discrete time-delay systems. This technique is utilized ...In this paper, a novel non-monotonic Lyapunov-Krasovskii functional approach is proposed to deal with the stability analysis and stabilization problem of linear discrete time-delay systems. This technique is utilized to relax the monotonic requirement of the Lyapunov-Krasovskii theorem. In this regard, the Lyapunov-Krasovskii functional is allowed to increase in a few steps, while being forced to be overall decreasing. As a result, it relays on a larger class of Lyapunov-Krasovskii functionals to provide stability of a state-delay system. To this end, using the non-monotonic Lyapunov-Krasovskii theorem, new sufficient conditions are derived regarding linear matrix inequalities(LMIs)to study the global asymptotic stability of state-delay systems.Moreover, new stabilization conditions are also proposed for time-delay systems in this article. Both simulation and experimental results on a p H neutralizing process are provided to demonstrate the efficacy of the proposed method.展开更多
This paper is concerned with the non-fragile H∞ filter design problem for uncertain discrete-time Takagi-Sugeno (T-S) fuzzy systems with time delay. To begin with, the T-S fuzzy system is transformed to an equivale...This paper is concerned with the non-fragile H∞ filter design problem for uncertain discrete-time Takagi-Sugeno (T-S) fuzzy systems with time delay. To begin with, the T-S fuzzy system is transformed to an equivalent switching fuzzy system. Then, based on the piecewise Lyapunov function and matrix decoupling technique, a new delay-dependent non-fragile H∞ filtering method is proposed for the switching fuzzy system. The proposed condition is less conservative than the previous results. Since only a set of LMIs is involved, the filter parameters can be solved directly. Finally, a design example is provided to illustrate the validity of the proposed method.展开更多
文摘We exploit the theory of reproducing kernels to deduce a matrix inequality for the inverse of the restriction of a positive definite Hermitian matrix.
基金supported by the Science Foundation of the Department of Science and Technology,New Delhi,India (Grant No.SR/S4/MS:485/07)
文摘This paper studies the problem of linear matrix inequality (LMI) approach to robust stability analysis for stochastic neural networks with a time-varying delay. By developing a delay decomposition approach, the information of the delayed plant states can be taken into full consideration. Based on the new Lyapunov-Krasovskii functional, some inequality techniques and stochastic stability theory, new delay-dependent stability criteria are obtained in terms of LMIs. The proposed results prove the less conservatism, which are realized by choosing new Lyapunov matrices in the decomposed integral intervals. Finally, numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed LMI method.
基金The National Natural Science Foundation of China(No.11371089)the China Postdoctoral Science Foundation(No.2016M601688)
文摘The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian positive definite matrix and parameters s,t>0. Based on the matrix geometry theory, relevant matrix inequality and linear algebra technology, according to the different value ranges of the parameters s,t, the existence intervals of the Hermitian positive definite solution and the necessary conditions for equation solvability are presented, respectively. Comparing the existing correlation results, the proposed upper and lower bounds of the Hermitian positive definite solution are more accurate and applicable.
基金supported by the National Natural Science Foundation of China (6090405161021002)
文摘The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain systems are developed with the benefit of the scalar multi-convex function. To be convenient for applications, such conditions are simplified into new linear matrix inequality (LMI) conditions, which can be solved by the powerful LMI toolbox. Numerical examples are provided to indicate that this new approach is less conservative than previous results for Hurwitz stability, Schur stability and D-stability of uncertain systems under certain circumstances.
基金This work was supported by the Basic Program in Natural Sciences, Vietnam and Thai Research Fund Grant, Thailand
文摘In this paper, we address the stabilization problem for linear periodically time-varying switched systems. Using discretization technique, we derive new conditions for the global stabilizability in terms of the solution of matrix inequalities. An algorithm for finding stabilizing controller and switching strategy is presented.
基金This work was supported by the Doctor Subject Foundation of China (No. 2000053303)
文摘Necessary and suffcient conditions for the existence of a Lyapunov function in the Lur ’ e form to guarantee the absolute stability of Lur’ e control systems with multiple non-linearities are discussed in this paper. It simplifies the existence problem to one of solving a set of linear matrix inequalities (LMIs). If those LMIs are feasible, free parameters in the Lyapunov function, such as the positive definite matrix and the coefficients of the integral terms, are given by the solution of the LMIs. Otherwise, this Lyapunov function does not exist. Some sufficient conditions are also obtained for the robust absolute stability of uncertain systems. A numerical example is provided to demonstrate the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China ( No. 60872083 ) and the National High Technology Research and Development Program of China (No. 2007AA12Z149).
文摘This paper considers a problem of unsupervised spectral unmixing of hyperspectral data. Based on the Linear Mixing Model ( LMM), a new method under the framework of nonnegative matrix fac- torization (NMF) is proposed, namely minimum distance constrained nonnegative matrix factoriza- tion (MDC-NMF). In this paper, firstly, a new regularization term, called endmember distance (ED) is considered, which is defined as the sum of the squared Euclidean distances from each end- member to their geometric center. Compared with the simplex volume, ED has better optimization properties and is conceptually intuitive. Secondly, a projected gradient (PG) scheme is adopted, and by the virtue of ED, in this scheme the optimal step size along the feasible descent direction can be calculated easily at each iteration. Thirdly, a finite step ( no more than the number of endmem- bers) terminated algorithm is used to project a point on the canonical simplex, by which the abun- dance nonnegative constraint and abundance sum-to-one constraint can be accurately satisfied in a light amount of computation. The experimental results, based on a set of synthetic data and real da- ta, demonstrate that, in the same running time, MDC-NMF outperforms several other similar meth- ods proposed recently.
文摘The separation of the Lyapunov matrices and system matrices plays an important role when one uses parameter-dependent Lyapunov functional handling systems with polytopic type uncertainties. The delay-dependent robust stability problem for systems with polytopic type uncertainties is discussed by using parameter-dependent Lyapunov functional. The derivative term in the derivative of Lyapunov functional is reserved and the free weighting matrices are employed to express the relationship between die terms in the system equation such that the Lyapunov matrices are not involved in any product terms with the system matrices. In addition, the relationships between the terms in the Leibniz Newton formula are also described by some free weighting matrices and some delay-dependent stability conditions are derived. Numerical examples demonstrate that the proposed criteria are more effective than the previous results.
基金Specialized Research Fund for the Doctoral Program of Higher Education ( No. 20090092110051)the Key Project of Chinese Ministry of Education ( No. 108060)the National Natural Science Foundation of China ( No. 51076027, 51036002, 51106024)
文摘An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local model. Thus, the stability analysis method of the homogeneous fuzzy system can be used for reference. Stability conditions are derived in terms of linear matrix inequalities based on the fuzzy Lyapunov functions and the modified common Lyapunov functions, respectively. The results demonstrate that the stability result based on the fuzzy Lyapunov functions is less conservative than that based on the modified common Lyapunov functions via numerical examples. Compared with the method which does not expand the consequent part, the proposed method is simpler but its feasible region is reduced. Finally, in order to expand the application of the fuzzy Lyapunov functions, the piecewise fuzzy Lyapunov function is proposed, which can be used to analyze the stability for triangular or trapezoidal membership functions and obtain the stability conditions. A numerical example validates the effectiveness of the proposed approach.
文摘The problem of robust L 1 filtering with pole constraint in a disk for linear continuous polytopic uncertain systems is discussed. The attention is focused on design a linear asymptotically stable filter such that the filtering error system remains robustly stable, and has a L 1 performance constraint and pole constraint in a disk. The new robust L 1 performance criteria and regional pole placement condition are obtained via parameter-dependent Lyapunov functions method. Upon the proposed multiobjective performance criteria and by means of LMI technique, both full-order and reduced-order robust L 1 filter with suitable dynamic behavior can be obtained from the solution of convex optimization problems. Compared with earlier result in the quadratic framework, this approach turns out to be less conservative. The efficiency of the proposed technique is demonstrated by a numerical example.
文摘Addresses the design problems of robust L2-L∞ filters with pole constraint in a disk for uncertain continuous-time linear systems. The uncertain parameters are assumed to belong to convex bounded domains. The aim is to determine a stable linear filter such that the filtering error system possesses a prescribed L2-L∞ noise attenuation level and expected poles location. The filtering strategies are based on parameter-dependent Lyapunov stability results to derive new robust L2-L∞ performance criteria and the regional pole placement conditions. From the proposed multi-objective performance criteria, we derive sufficient conditions for the existence of robust L2-L∞ filters with pole constraint in a disk, and cast the filter design into a convex optimization problem subject to a set of linear matrix inequality constraints. This filtering method exhibits less conservativeness than previous results in the quadratic framework. The advantages of the filter design procedures are demonstrated by means of numerical examples.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61304063, in part by the Fundamental Research Funds for the Central Universities under Grant 72103676, in part by the Science and Technology Research Foundation of Yanan under Grant 2013-KG16, in part by Yanan University under Grant YDBK2013-12, 2012SXTS07.
文摘Based on a piecewise quadratic lyapunov function (PQLF), this paper presents stochastic stability analysis and synthesis methods for ItO and discrete T-S fuzzy bilinear stochastic systems. Two improved stochastic stability conditions have been established in terms of linear matrix inequalities (LMIs). It is shown that the stability in the mean square for T-S fuzzy bilinear stochastic systems can be established if a PQLF can be constructed. Considering the established stability criterion, the controller can be designed by solving a set of (LMIs), and the closed loop system is asymptotically stable in the mean square. Two illustrative examples are provided to demonstrate the effectiveness of the results proposed in this paper.
基金supported in part by the Japan Ministry of Education,Sciences and Culture under Grants-in-Aid for Scientific Research(C)(21560471)the Green Industry Leading Program of Hubei University of Technology(CPYF2017003)the National Natural Science Foundation of China(1160147411461082)
文摘We consider quadratic stabilization for a class of switched systems which are composed of a finite set of continuoustime linear subsystems with norm bounded uncertainties. Under the assumption that there is no single quadratically stable subsystem, if a convex combination of subsystems is quadratically stable, then we propose a state-dependent switching law, based on the convex combination of subsystems, such that the entire switched linear system is quadratically stable. When the state information is not available, we extend the discussion to designing an outputdependent switching law by constructing a robust Luenberger observer for each subsystem.
基金This work was partially supported by the National Natural Science Foundation of China(No.60504008).
文摘The robust stability and robust sliding mode control problems are studied for a class of linear distributed time-delay systems with polytopic-type uncertainties by applying the parameter-dependent Lyapunov functional approach combining with a new method of introducing some relaxation matrices and tuning parameters, which can be chosen properly to lead to a less conservative result. First, a sufficient condition is proposed for robust stability of the autonomic system; next, the sufficient conditions of the robust stabilization controller and the existence condition of sliding mode are developed. The results are given in terms of linear matrix inequalities (LMIs), which can be solved via efficient interior-point algorithms. A numerical example is presented to illustrate the feasibility and advantages of the proposed design scheme.
文摘In this paper, a novel non-monotonic Lyapunov-Krasovskii functional approach is proposed to deal with the stability analysis and stabilization problem of linear discrete time-delay systems. This technique is utilized to relax the monotonic requirement of the Lyapunov-Krasovskii theorem. In this regard, the Lyapunov-Krasovskii functional is allowed to increase in a few steps, while being forced to be overall decreasing. As a result, it relays on a larger class of Lyapunov-Krasovskii functionals to provide stability of a state-delay system. To this end, using the non-monotonic Lyapunov-Krasovskii theorem, new sufficient conditions are derived regarding linear matrix inequalities(LMIs)to study the global asymptotic stability of state-delay systems.Moreover, new stabilization conditions are also proposed for time-delay systems in this article. Both simulation and experimental results on a p H neutralizing process are provided to demonstrate the efficacy of the proposed method.
基金supported by National Natural Science Foundation of China(No.60974139,No.60804021)Fundamental Research Funds for the Central Universities
文摘This paper is concerned with the non-fragile H∞ filter design problem for uncertain discrete-time Takagi-Sugeno (T-S) fuzzy systems with time delay. To begin with, the T-S fuzzy system is transformed to an equivalent switching fuzzy system. Then, based on the piecewise Lyapunov function and matrix decoupling technique, a new delay-dependent non-fragile H∞ filtering method is proposed for the switching fuzzy system. The proposed condition is less conservative than the previous results. Since only a set of LMIs is involved, the filter parameters can be solved directly. Finally, a design example is provided to illustrate the validity of the proposed method.