In order to solve the problem of difficult modeling and identification caused by time-variable parameters,multiple inputs and outputs and unstable open loop,a subsystem model-based close-loop grey-box identification m...In order to solve the problem of difficult modeling and identification caused by time-variable parameters,multiple inputs and outputs and unstable open loop,a subsystem model-based close-loop grey-box identification method was put forward when consider the main coupling effects of hydraulic Stewart platform.Firstly,the whole system is divided into three TITO(Two Input Two Output) subsystems according to the characteristics of the pseudo-mass matrix,hence transfer function matrix model of the subsystem can also be found.Secondly,since the Stewart platform is unstable,the close-loop transfer model of the subsystem is derived under the proportional controllers.The inverse M serial is adopted as the identification signal to get the experimental data.All parameters of the subsystem are determined in close-loop indirect identification by PEM(Prediction Error Method).Finally,a case study validates the correctness and effectiveness of the subsystem model-based close-loop grey-box identification method for hydraulic Stewart platform.展开更多
为实现大规模电力系统潮流的准确、快速求解,以非精确牛顿法为基础,提出一种基于CPU-GPU异构平台的电力系统潮流并行计算方法。修正方程组的求解是牛拉法潮流计算中最为耗时的部分,提升修正方程组的求解效率可有效提升潮流计算效率。为...为实现大规模电力系统潮流的准确、快速求解,以非精确牛顿法为基础,提出一种基于CPU-GPU异构平台的电力系统潮流并行计算方法。修正方程组的求解是牛拉法潮流计算中最为耗时的部分,提升修正方程组的求解效率可有效提升潮流计算效率。为此,根据雅可比矩阵的不对称不定性,采用稳定双正交共轭梯度(bi-conjugate gradient stabilized,BICGSTAB)法进行修正方程组的求解。进一步,为改善BICGSTAB法的收敛性,根据雅可比矩阵的稀疏性和类对角占优性,提出一种改进PPAT(Preconditioner with sparsity Pattern of AT,PPAT)预处理器和改进Jacobi预处理器相结合的两阶段预处理方法,并对雅可比矩阵进行预处理,提升BICGSTAB法的收敛性能。然后,将上述潮流算法移植到CPU-GPU异构平台,实现电力系统潮流的并行求解。最后,通过不同测试系统算例对所提方法进行验证、分析。结果表明,所提潮流并行计算方法可实现电力系统潮流的准确、快速求解。展开更多
文摘In order to solve the problem of difficult modeling and identification caused by time-variable parameters,multiple inputs and outputs and unstable open loop,a subsystem model-based close-loop grey-box identification method was put forward when consider the main coupling effects of hydraulic Stewart platform.Firstly,the whole system is divided into three TITO(Two Input Two Output) subsystems according to the characteristics of the pseudo-mass matrix,hence transfer function matrix model of the subsystem can also be found.Secondly,since the Stewart platform is unstable,the close-loop transfer model of the subsystem is derived under the proportional controllers.The inverse M serial is adopted as the identification signal to get the experimental data.All parameters of the subsystem are determined in close-loop indirect identification by PEM(Prediction Error Method).Finally,a case study validates the correctness and effectiveness of the subsystem model-based close-loop grey-box identification method for hydraulic Stewart platform.
文摘为实现大规模电力系统潮流的准确、快速求解,以非精确牛顿法为基础,提出一种基于CPU-GPU异构平台的电力系统潮流并行计算方法。修正方程组的求解是牛拉法潮流计算中最为耗时的部分,提升修正方程组的求解效率可有效提升潮流计算效率。为此,根据雅可比矩阵的不对称不定性,采用稳定双正交共轭梯度(bi-conjugate gradient stabilized,BICGSTAB)法进行修正方程组的求解。进一步,为改善BICGSTAB法的收敛性,根据雅可比矩阵的稀疏性和类对角占优性,提出一种改进PPAT(Preconditioner with sparsity Pattern of AT,PPAT)预处理器和改进Jacobi预处理器相结合的两阶段预处理方法,并对雅可比矩阵进行预处理,提升BICGSTAB法的收敛性能。然后,将上述潮流算法移植到CPU-GPU异构平台,实现电力系统潮流的并行求解。最后,通过不同测试系统算例对所提方法进行验证、分析。结果表明,所提潮流并行计算方法可实现电力系统潮流的准确、快速求解。