Sleep disturbances are among the most prevalent neuropsychiatric symptoms in individuals who have recovered from severe acute respiratory syndrome coronavirus 2 infections.Previous studies have demonstrated abnormal b...Sleep disturbances are among the most prevalent neuropsychiatric symptoms in individuals who have recovered from severe acute respiratory syndrome coronavirus 2 infections.Previous studies have demonstrated abnormal brain structures in patients with sleep disturbances who have recovered from coronavirus disease 2019(COVID-19).However,neuroimaging studies on sleep disturbances caused by COVID-19 are scarce,and existing studies have primarily focused on the long-term effects of the virus,with minimal acute phase data.As a result,little is known about the pathophysiology of sleep disturbances in the acute phase of COVID-19.To address this issue,we designed a longitudinal study to investigate whether alterations in brain structure occur during the acute phase of infection,and verified the results using 3-month follow-up data.A total of 26 COVID-19 patients with sleep disturbances(aged 51.5±13.57 years,8 women and 18 men),27 COVID-19 patients without sleep disturbances(aged 47.33±15.98 years,9 women and 18 men),and 31 age-and gender-matched healthy controls(aged 49.19±17.51 years,9 women and 22 men)were included in this study.Eleven COVID-19 patients with sleep disturbances were included in a longitudinal analysis.We found that COVID-19 patients with sleep disturbances exhibited brain structural changes in almost all brain lobes.The cortical thicknesses of the left pars opercularis and left precuneus were significantly negatively correlated with Pittsburgh Sleep Quality Index scores.Additionally,we observed changes in the volume of the hippocampus and its subfield regions in COVID-19 patients compared with the healthy controls.The 3-month follow-up data revealed indices of altered cerebral structure(cortical thickness,cortical grey matter volume,and cortical surface area)in the frontal-parietal cortex compared with the baseline in COVID-19 patients with sleep disturbances.Our findings indicate that the sleep disturbances patients had altered morphology in the cortical and hippocampal structures during the acute phase of infection and persistent changes in cortical regions at 3 months post-infection.These data improve our understanding of the pathophysiology of sleep disturbances caused by COVID-19.展开更多
The inorganic antimicrobial material was inhibited to the microbes with the added metal ion,Zn.The primary wet product carrying 5%-10% zinc ion was generated under the following conditions:temperature was 95 ℃,solut...The inorganic antimicrobial material was inhibited to the microbes with the added metal ion,Zn.The primary wet product carrying 5%-10% zinc ion was generated under the following conditions:temperature was 95 ℃,solution zinc concentration was 1.2-2.0 mol/L,and the ratio of Zn solution to zeolite weight was 5:1.The final stable product was manufactured after baking in an oven for 1-3 h at the temperature of 500-900 ℃.The baked material was tested for its disinfection effectiveness and coloring effect when mixed with paint coating.Based on the final batch of tests,the zinc content of this anti-microbial product was further optimized.展开更多
Four coumarin derivatives(4a-4d) with different alkoxy chains were synthesized. It was found that compound 4d showed a better gelation ability than the other compounds, for example, it could self-assemble into organ...Four coumarin derivatives(4a-4d) with different alkoxy chains were synthesized. It was found that compound 4d showed a better gelation ability than the other compounds, for example, it could self-assemble into organogels in various organic fluids via ultrasound treatment or heating-cooling process, whereas compound 4c could only gel in a few mixed solvents and compounds 4a, 4b could not form organogel. The results from fluorescent and FT-IR spectra indicate that π-π interaction had an effect on the formation of the organogels of compound 4d besides H-bonding and van der Waals interaction, which were the driving forces for the self-assembling of compound 4c in gel state. The gel of compound 4d in toluene could emit strong fluorescence under UV irradiation and the [2+2] cyclo-addition was suggested by ^1H NMR and fluorescence spectroscopy. This light-sensitive organogel might find application in optical materials.展开更多
In this study, we developed a novel artificial nerve graft termed self-assembling peptide nanofiber scaffold (SAPNS)-containing poly(lactic-co-glycolic acid) (PLGA) conduit (SPC) and used it to bridge a 10-mm-...In this study, we developed a novel artificial nerve graft termed self-assembling peptide nanofiber scaffold (SAPNS)-containing poly(lactic-co-glycolic acid) (PLGA) conduit (SPC) and used it to bridge a 10-mm-long sciatic nerve defect in the rat. Retrograde tracing, behavioral testing and histomorphometric analyses showed that compared with the empty PLGA conduit implantation group, the SPC implantation group had a larger number of growing and extending axons, a markedly increased diameter of regenerated axons and a greater thickness of the myelin sheath in the conduit. Furthermore, there was an increase in the size of the neuromuscular junction and myofiber diameter in the target muscle. These findings suggest that the novel artificial SPC nerve graft can promote axonal regeneration and remyelination in the transected peripheral nerve and can be used for repairing peripheral nerve injury.展开更多
The effect of culture in KLD-12 self-assembling peptide nanofiber scaffold containing TGF-β3 gene on differentiation of precartilaginous stem cells (PSCs) into chondrocytes was studied. KLD-12 was synthesized by so...The effect of culture in KLD-12 self-assembling peptide nanofiber scaffold containing TGF-β3 gene on differentiation of precartilaginous stem cells (PSCs) into chondrocytes was studied. KLD-12 was synthesized by solid-state method. After TGF-β3 plasmid was loaded into KLD-12 self-assembling peptide nanofiber scaffold, DNA release ability was investigated. PSCs and hTGF-β3 gene were loaded into KLD-12 3-D scaffold, and MTT assay was performed to investigate the cell proliferation, and ELASA assay was used to investigate the expression of TGF-β3. Specific cartilage matrix was examined by quantitative real-time PCR, immunohistochemistry and Alcian Blue staining. Compared with control group, DNA synthesis level of PSCs reached the peak within 3 days when PSCs were cultured in self-assembling peptide nanofiber scaffold loading TGF-β3 plasmid, and maintained this high level within 2 weeks. MTT results showed that the proliferation ability of experimental group was statistically higher than that in control group (P〈0.05). Quantitative real-time PCR suggested that the percentage of TGF-β3 positive PSCs in experimental group was higher than that in control group (P〈0.01). ELISA assay showed that the TGF-β3 protein level increased in supernatant of experimental group's PSCs, reached the peak after 72 h and then declined a little to the plateau phase. Compared with the control group, the specific gene of chondrocyte typical extracellular matrix significantly up-regulated (P〈0.01). The results showed that PSCs differentiated into chondrocytes in self-assembling peptide nanofiber scaffold loading TGF-β3 plasmid, which provided a fresh approach to cartilage tissue engineering.展开更多
Following injury in central nervous system(CNS),there are pathological changes in the injured region,which include neuronal death,axonal damage and demyelination,inflammatory response and activation of glial cells.T...Following injury in central nervous system(CNS),there are pathological changes in the injured region,which include neuronal death,axonal damage and demyelination,inflammatory response and activation of glial cells.The proliferation of a large number of astrocytes results in the formation of glial scar.展开更多
The self-assembly behavior of the amphiphilic block copolymer poly( methyl methacrylate) -block-poly( lead dimethacrylate) (PMMA-b-PLDMA) with cross-linked hydrophilic block(PLDMA) in ethanol was investigated....The self-assembly behavior of the amphiphilic block copolymer poly( methyl methacrylate) -block-poly( lead dimethacrylate) (PMMA-b-PLDMA) with cross-linked hydrophilic block(PLDMA) in ethanol was investigated. The results show that the size and morphology of the resulting micelle or micellar aggregates are ascribed to the content of ethanol and the nature of the solvent mixture. PbS nanoparticles were formed in the micelle by in situ reaction with H2S gas. The morphology and size of the self-assembly objects were investigated using scanning electron microscopy (SEM) and transmission electron microscopy(TEM).展开更多
By covalently binding chromophore NPP, N-(4-nitrophenyl)-(L)-prolinol, to a structurally controlled cage-like cross-linking polymer (SCCP), a modified nonlinear optical (NLO) polymeric film prepared by 'in situ po...By covalently binding chromophore NPP, N-(4-nitrophenyl)-(L)-prolinol, to a structurally controlled cage-like cross-linking polymer (SCCP), a modified nonlinear optical (NLO) polymeric film prepared by 'in situ poling and sol-gel' process successfully overcame the fundamental problem of NPP chromophores subliming out from the cages of the 'doped'' NLO polymeric film when heated or placed under UV light. Its d(33) (coefficient of second harmonic generation) is 2.0 X 10(-8) esu. measured by IR dichroism. The modified film has a low decay of the SHG signal and preserves 94% of the initial value after 50 days at room temperature These properties match that of the 'doped' film, indicating that the modified film also retains the main advantages of the 'doped' film.展开更多
White matter,a densely packed collection of myelinated axons,plays an essential part in neural networks.With high spatial resolution and deep penetration,multi-photon microscopy(MPM)is promising for white matter imagi...White matter,a densely packed collection of myelinated axons,plays an essential part in neural networks.With high spatial resolution and deep penetration,multi-photon microscopy(MPM)is promising for white matter imaging in animal models in vivo.The third harmonic generation(THG)signal can be generated from white matter,but the bottom part of the white matter layer generates weak THG due to its high scattering.Here,we demonstrate an in vivo labeling and imaging technology,capable of visualizing the white matter layer in the mouse brain,combining°uorescence labeling with MitoTracker Red and three-photon°uorescence(3PF)microscopy excited at the 1700 nm window.3PF signals are several times higher than THG signals,resulting in deeper imaging of the white matter layer with the former.Our results indicate that 3PF microscopy is a promising technology for white matter imaging in the deep brain in vivo.展开更多
A third-generation horseradish peroxidase (HRP) biosensor has been developed by adsorbing HRP on multi-wall carbon nanotube (MWNTs) monolayer modified gold electrode surface. The assembly process was investigated by...A third-generation horseradish peroxidase (HRP) biosensor has been developed by adsorbing HRP on multi-wall carbon nanotube (MWNTs) monolayer modified gold electrode surface. The assembly process was investigated by electrochemical and spectroscopic techniques. Results showed that the immobilized HRP exhibited direct electrochemical behavior toward the reduction of H2O2. The resulting biosensor shows a fast amperometric response (<2 s) to H2O2. The linear response range was from 5.0×10-7~1.0×10-5 mol/L with a detection limit of 1.0×10-7mol/L. Moreover, the biosensor has a good reproducibility, and long-term stability.展开更多
Long(15-40 μm), thin(diameter of 20 ± 5 nm), and well-dispersed CuNWs Cu nanowires were prepared. The high-resolution TEM and selected area electron diffraction showed that the CuNWs were single-crystalline. To ...Long(15-40 μm), thin(diameter of 20 ± 5 nm), and well-dispersed CuNWs Cu nanowires were prepared. The high-resolution TEM and selected area electron diffraction showed that the CuNWs were single-crystalline. To investigate the growth mechanism, we examined the microstructure of these CuNWs at different reaction time. It was found that the CuNWs were actually formed through the self-assembling of Cu nanoparticles along the [110] direction. The transparent electrodes fabricated using the CuNWs achieved a high transparency of 76 % at 31±5 Ω/□.展开更多
Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCa...Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCaT cells and zebrafish were used to evaluate the protective effects of the ethyl acetate fraction of Sargassum pallidum extract against PM-induced oxidative stress and inflammation.The production of nitric oxide(NO),intracellular ROS,prostaglandin E_(2)(PGE_(2)),and pro-inflammatory cytokines,and the expression levels of COX-2,iNOS,and NF-κB were evaluated in PM-induced HaCaT cells.Furthermore,the levels of ROS,NO,and lipid peroxidation were assessed in the PM-exposed zebrafish model.Results:The ethyl acetate fraction of Sargassum pallidum extract significantly decreased the production of NO,intracellular ROS,and PGE_(2) in PM-induced HaCaT cells.In addition,the fraction markedly suppressed the levels of pro-inflammatory cytokines and inhibited the expression levels of COX-2,iNOS,and NF-κB.Furthermore,it displayed remarkable protective effects against PM-induced inflammatory response and oxidative stress,represented by the reduction of NO,ROS,and lipid peroxidation in zebrafish.Conclusions:The ethyl acetate fraction of Sargassum pallidum extract exhibits a protective effect against PM-induced oxidative stress and inflammation both in vitro and in vivo and has the potential as a candidate for the development of pharmaceutical and cosmeceutical products.展开更多
High-yielding low-cost vanadium oxide nanotubes were prepared by the hydrothermal self-assembling process from vanadium pentoxide and organic molecules as structure-directing templates.Moreover,a new method was discov...High-yielding low-cost vanadium oxide nanotubes were prepared by the hydrothermal self-assembling process from vanadium pentoxide and organic molecules as structure-directing templates.Moreover,a new method was discovered for determining the content of V (IV) in vanadium oxide nanotubes by thermogravimetric analysis (TGA).This method is simple,precise and feasible and can be extended to determine the content of low oxidation state in the other transition metal oxide nanomaterials.展开更多
Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic compositio...Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic composition,major and trace element contents,as well as petrology.Two zircon U-Pb ages of(306.0±5.2)Ma and(303.5±3.7)Ma were obtained from the first member of the Fengcheng Formation.Combined with carbon isotopic stratigraphy,it is inferred that the depositional age of the Fengcheng Formation is about 297-306 Ma,spanning the Carboniferous-Permian boundary and corresponding to the interglacial period between C4 and P1 glacial events.Multiple increases in Hg/TOC ratios and altered volcanic ash were found in the shale rocks of the Fengcheng Formation,indicating that multiple phases of volcanic activity occurred during its deposition.An interval with a high B/Ga ratio was found in the middle of the second member of the Fengcheng Formation,associated with the occurrence of evaporite minerals and reedmergnerite,indicating that the high salinity of the water mass was related to hydrothermal activity.Comprehensive analysis suggests that the warm and humid climate during the deposition of Fengcheng Formation is conducive to the growth of organic matter such as algae and bacteria in the lake,and accelerates the continental weathering,driving the input of nutrients.Volcanic activities supply a large amount of nutrients and stimulate primary productivity.The warm climate and high salinity are conducive to water stratification,leading to water anoxia that benefits organic matter preservation.The above factors interact and jointly control the enrichment of organic matter in the Fengcheng Formation of Mahu Sag.展开更多
Self-assembling molecules are ubiquitous in nature, among which are proteins, nucleic acids (DNA and RNA), peptides and lipids. Recognizing the ability of biomolecules to self-assemble into various 3D shapes at the na...Self-assembling molecules are ubiquitous in nature, among which are proteins, nucleic acids (DNA and RNA), peptides and lipids. Recognizing the ability of biomolecules to self-assemble into various 3D shapes at the nanoscale, researchers are mimicking the self-assembly strategy for engineering of complex nanostructures. However, the general principles underlying the design of self-assembled molecules have not yet been identified. The question is “How to obtain a well-defined shape with desired properties by folding a chain of subunits (such as amino acids and nucleic acids)”, where properties are determined by the precise spatial arrangement of the subunits on the surface. In this paper, we consider the question from the viewpoint of the discrete differential geometry of n-simplices. Self-assembling molecules are then represented as a union of trajectories of 3-simplices (i.e., tetrahedrons), and the question is rephrased as a “boundary value problem” for flows on a space of tetrahedrons. Also considered is a characterization of two types of surface flows of n-simplices. It is a rough classification of surface flows, but may be essential in characterizing important properties of biomolecules such as allosteric regulation. The author believes this paper not only provides a new perspective for the engineering of self-assembling molecules, but also promotes further collaboration between mathematics and other disciplines in life science.展开更多
The self-assembling behavior of random copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate (AMPS)and hydrophobic comonomers possessing dodecyl groups linked by various spacer bonds was discussed with a focus ...The self-assembling behavior of random copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate (AMPS)and hydrophobic comonomers possessing dodecyl groups linked by various spacer bonds was discussed with a focus on theeffect of the spacer. The characterization of association behavior of such polymers in water using quasielastic light scattering,capillary electrophoresis, NMR relaxation, various fluorescence, and viscoelastic methods was described. These copolymersform a variety of self-assembled nanostructures depending on the type of the spacer. Random copolymers of AMPS and N-dodecylmethacrylamide show a strong preference for intrapolymer self-association even in concentrated aqueous solutionsforming single-macromolecular self-assemblies (unimolecular micelles). In contrast, random copolymers of AMPS anddodecyl methacrylate are prone to undergo interpolymer associations yielding multipolymer micelles. In random copolymersof AMPS and a methacrylate substituted a nonionic surfactant (HO(CH_2CH_2O)_(25)C_(12)H_(25)) (C_(12)E_(25)), dodecyl groups are muchless restricted by the polymer backbone because they are linked via a long, flexible hydrophilic spacer. Thus, the polymer-bound C_(12)E_(25) surfactant moieties form micelles similar to those formed by discrete surfactants, but they are bridged bypolymer chains forming a network structure.展开更多
A sequential deposition method is developed, where the hybrid organic-inorganic halide perovskite (CH3NH3Pb (I1-xBrx)3 ) is synthesized using precursor solutions containing CH3NH3I and PbBr2 with different mole ra...A sequential deposition method is developed, where the hybrid organic-inorganic halide perovskite (CH3NH3Pb (I1-xBrx)3 ) is synthesized using precursor solutions containing CH3NH3I and PbBr2 with different mole ratios and reaction times. The perovskite achieved here is quite stable in the atmosphere for a relatively long time without noticeable degradation, and the perovskite nanowires are proved to be single crystalline structure, based on transmission electron microscopy.Furthermore, strong red photoluminescence from perovskite is observed in the wavelength range from 746nm to 770nm with the increase of the reaction time, on account of the exchanges between I- ions and Br- ions in the perovskite crystal. Lastly, the influences of concentration and reaction time of the precursor solutions are discussed, which are important for evolution of hybrid perovskite from nanocuboid to nanowire and nanosheet.展开更多
A novel amphiphile of 4-[4-(4-decyloxyphenylazo) naphthyloxy] butyl trimethylammonium bromide has been synthesized. It can form the stable bilayer in dilute aqueous solution.
Supercapacitors based on two-dimensional MXene(Ti_(3)C_(2)T_(z))have shown extraordinary performance in ultrathin electrodes with low mass loading,but usually there is a significant reduction in high-rate performance ...Supercapacitors based on two-dimensional MXene(Ti_(3)C_(2)T_(z))have shown extraordinary performance in ultrathin electrodes with low mass loading,but usually there is a significant reduction in high-rate performance as the thickness increases,caused by increasing ion diffusion limitation.Further limitations include restacking of the nanosheets,which makes it challenging to realize the full potential of these electrode materials.Herein,we demonstrate the design of a vertically aligned MXene hydrogel composite,achieved by thermal-assisted self-assembled gelation,for high-rate energy storage.The highly interconnected MXene network in the hydrogel architecture provides very good electron transport properties,and its vertical ion channel structure facilitates rapid ion transport.The resulting hydrogel electrode show excellent performance in both aqueous and organic electrolytes with respect to high capacitance,stability,and high-rate capability for up to 300μm thick electrodes,which represents a significant step toward practical applications.展开更多
Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review ...Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review discusses the driving forces behind the self-assembly process of perovskite NCs,and the commonly used self-assembly methods and different self-assembly structures are detailed.Subsequently,we summarize the collective optoelectronic properties and application areas of perovskite superlattice structures.Finally,we conclude with an outlook on the potential issues and future challenges in developing perovskite NCs.展开更多
基金supported by grants from Major Project of Science and Technology of Guangxi Zhuang Autonomous Region,No.Guike-AA22096018(to JY)Guangxi Key Research and Development Program,No.AB22080053(to DD)+6 种基金Major Project of Science and Technology of Guangxi Zhuang Autonomous Region,No.Guike-AA23023004(to MZ)the National Natural Science Foundation of China,Nos.82260021(to MZ),82060315(to DD)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,No.2021GXNSFBA220007(to GD)Clinical Research Center For Medical Imaging in Hunan Province,No.2020SK4001(to JL)Key Emergency Project of Pneumonia Epidemic of Novel Coronavirus Infection in Hunan Province,No.2020SK3006(to JL)Science and Technology Innovation Program of Hunan Province,No.2021RC4016(to JL)Key Project of the Natural Science Foundation of Hunan Province,No.2024JJ3041(to JL).
文摘Sleep disturbances are among the most prevalent neuropsychiatric symptoms in individuals who have recovered from severe acute respiratory syndrome coronavirus 2 infections.Previous studies have demonstrated abnormal brain structures in patients with sleep disturbances who have recovered from coronavirus disease 2019(COVID-19).However,neuroimaging studies on sleep disturbances caused by COVID-19 are scarce,and existing studies have primarily focused on the long-term effects of the virus,with minimal acute phase data.As a result,little is known about the pathophysiology of sleep disturbances in the acute phase of COVID-19.To address this issue,we designed a longitudinal study to investigate whether alterations in brain structure occur during the acute phase of infection,and verified the results using 3-month follow-up data.A total of 26 COVID-19 patients with sleep disturbances(aged 51.5±13.57 years,8 women and 18 men),27 COVID-19 patients without sleep disturbances(aged 47.33±15.98 years,9 women and 18 men),and 31 age-and gender-matched healthy controls(aged 49.19±17.51 years,9 women and 22 men)were included in this study.Eleven COVID-19 patients with sleep disturbances were included in a longitudinal analysis.We found that COVID-19 patients with sleep disturbances exhibited brain structural changes in almost all brain lobes.The cortical thicknesses of the left pars opercularis and left precuneus were significantly negatively correlated with Pittsburgh Sleep Quality Index scores.Additionally,we observed changes in the volume of the hippocampus and its subfield regions in COVID-19 patients compared with the healthy controls.The 3-month follow-up data revealed indices of altered cerebral structure(cortical thickness,cortical grey matter volume,and cortical surface area)in the frontal-parietal cortex compared with the baseline in COVID-19 patients with sleep disturbances.Our findings indicate that the sleep disturbances patients had altered morphology in the cortical and hippocampal structures during the acute phase of infection and persistent changes in cortical regions at 3 months post-infection.These data improve our understanding of the pathophysiology of sleep disturbances caused by COVID-19.
基金Funded by the Construct Plan of Cooperation Project from the Beijing Education Committee(No. XK100080432)
文摘The inorganic antimicrobial material was inhibited to the microbes with the added metal ion,Zn.The primary wet product carrying 5%-10% zinc ion was generated under the following conditions:temperature was 95 ℃,solution zinc concentration was 1.2-2.0 mol/L,and the ratio of Zn solution to zeolite weight was 5:1.The final stable product was manufactured after baking in an oven for 1-3 h at the temperature of 500-900 ℃.The baked material was tested for its disinfection effectiveness and coloring effect when mixed with paint coating.Based on the final batch of tests,the zinc content of this anti-microbial product was further optimized.
基金Sypported by National Natural Science Foundation of China(No.20574027)Program for New Century Excellent Talents in University.
文摘Four coumarin derivatives(4a-4d) with different alkoxy chains were synthesized. It was found that compound 4d showed a better gelation ability than the other compounds, for example, it could self-assemble into organogels in various organic fluids via ultrasound treatment or heating-cooling process, whereas compound 4c could only gel in a few mixed solvents and compounds 4a, 4b could not form organogel. The results from fluorescent and FT-IR spectra indicate that π-π interaction had an effect on the formation of the organogels of compound 4d besides H-bonding and van der Waals interaction, which were the driving forces for the self-assembling of compound 4c in gel state. The gel of compound 4d in toluene could emit strong fluorescence under UV irradiation and the [2+2] cyclo-addition was suggested by ^1H NMR and fluorescence spectroscopy. This light-sensitive organogel might find application in optical materials.
基金supported by a grant from the National Key Basic Research Program of China,No.2014CB542202 and 2014CB542205the National Natural Science Foundation of China,No.30973095&81371354+2 种基金a grant from Science and Technology Project of Guangzhou,in China,No.12C32121609the Natural Science Foundation of Guangdong Province of China,No.S2013010014697 to Guo JSHong Kong SCI Fund to Wu WT
文摘In this study, we developed a novel artificial nerve graft termed self-assembling peptide nanofiber scaffold (SAPNS)-containing poly(lactic-co-glycolic acid) (PLGA) conduit (SPC) and used it to bridge a 10-mm-long sciatic nerve defect in the rat. Retrograde tracing, behavioral testing and histomorphometric analyses showed that compared with the empty PLGA conduit implantation group, the SPC implantation group had a larger number of growing and extending axons, a markedly increased diameter of regenerated axons and a greater thickness of the myelin sheath in the conduit. Furthermore, there was an increase in the size of the neuromuscular junction and myofiber diameter in the target muscle. These findings suggest that the novel artificial SPC nerve graft can promote axonal regeneration and remyelination in the transected peripheral nerve and can be used for repairing peripheral nerve injury.
基金Funded by the National Natural Science Foundation of China (No.30571873)
文摘The effect of culture in KLD-12 self-assembling peptide nanofiber scaffold containing TGF-β3 gene on differentiation of precartilaginous stem cells (PSCs) into chondrocytes was studied. KLD-12 was synthesized by solid-state method. After TGF-β3 plasmid was loaded into KLD-12 self-assembling peptide nanofiber scaffold, DNA release ability was investigated. PSCs and hTGF-β3 gene were loaded into KLD-12 3-D scaffold, and MTT assay was performed to investigate the cell proliferation, and ELASA assay was used to investigate the expression of TGF-β3. Specific cartilage matrix was examined by quantitative real-time PCR, immunohistochemistry and Alcian Blue staining. Compared with control group, DNA synthesis level of PSCs reached the peak within 3 days when PSCs were cultured in self-assembling peptide nanofiber scaffold loading TGF-β3 plasmid, and maintained this high level within 2 weeks. MTT results showed that the proliferation ability of experimental group was statistically higher than that in control group (P〈0.05). Quantitative real-time PCR suggested that the percentage of TGF-β3 positive PSCs in experimental group was higher than that in control group (P〈0.01). ELISA assay showed that the TGF-β3 protein level increased in supernatant of experimental group's PSCs, reached the peak after 72 h and then declined a little to the plateau phase. Compared with the control group, the specific gene of chondrocyte typical extracellular matrix significantly up-regulated (P〈0.01). The results showed that PSCs differentiated into chondrocytes in self-assembling peptide nanofiber scaffold loading TGF-β3 plasmid, which provided a fresh approach to cartilage tissue engineering.
基金supported by National Basic Research Program of China(973 Program,2014CB542205)Hong Kong RGC grant+2 种基金Hong Kong Health and Medical Research Fundfoundation for Distinguished Young Talents in Higher Education of Guangdong(Yq2013023)the Leading Talents of Guangdong Province(87014002)
文摘Following injury in central nervous system(CNS),there are pathological changes in the injured region,which include neuronal death,axonal damage and demyelination,inflammatory response and activation of glial cells.The proliferation of a large number of astrocytes results in the formation of glial scar.
基金Suppored by the National Natural Science Foundation of China ( Nos 20374024 and 20534040) and the Program forChangjiang Scholars and Innovative Research Team in Universities(No IRT0422)
文摘The self-assembly behavior of the amphiphilic block copolymer poly( methyl methacrylate) -block-poly( lead dimethacrylate) (PMMA-b-PLDMA) with cross-linked hydrophilic block(PLDMA) in ethanol was investigated. The results show that the size and morphology of the resulting micelle or micellar aggregates are ascribed to the content of ethanol and the nature of the solvent mixture. PbS nanoparticles were formed in the micelle by in situ reaction with H2S gas. The morphology and size of the self-assembly objects were investigated using scanning electron microscopy (SEM) and transmission electron microscopy(TEM).
基金The project was supported by the National Natural Science Foundation of China (No. 59483001).
文摘By covalently binding chromophore NPP, N-(4-nitrophenyl)-(L)-prolinol, to a structurally controlled cage-like cross-linking polymer (SCCP), a modified nonlinear optical (NLO) polymeric film prepared by 'in situ poling and sol-gel' process successfully overcame the fundamental problem of NPP chromophores subliming out from the cages of the 'doped'' NLO polymeric film when heated or placed under UV light. Its d(33) (coefficient of second harmonic generation) is 2.0 X 10(-8) esu. measured by IR dichroism. The modified film has a low decay of the SHG signal and preserves 94% of the initial value after 50 days at room temperature These properties match that of the 'doped' film, indicating that the modified film also retains the main advantages of the 'doped' film.
基金funded by the National Natural Science Foundation of China(62075135,61975126)Shenzhen Key Laboratory of Photonics and Biophotonics(ZDSYS20210623092006020).
文摘White matter,a densely packed collection of myelinated axons,plays an essential part in neural networks.With high spatial resolution and deep penetration,multi-photon microscopy(MPM)is promising for white matter imaging in animal models in vivo.The third harmonic generation(THG)signal can be generated from white matter,but the bottom part of the white matter layer generates weak THG due to its high scattering.Here,we demonstrate an in vivo labeling and imaging technology,capable of visualizing the white matter layer in the mouse brain,combining°uorescence labeling with MitoTracker Red and three-photon°uorescence(3PF)microscopy excited at the 1700 nm window.3PF signals are several times higher than THG signals,resulting in deeper imaging of the white matter layer with the former.Our results indicate that 3PF microscopy is a promising technology for white matter imaging in the deep brain in vivo.
文摘A third-generation horseradish peroxidase (HRP) biosensor has been developed by adsorbing HRP on multi-wall carbon nanotube (MWNTs) monolayer modified gold electrode surface. The assembly process was investigated by electrochemical and spectroscopic techniques. Results showed that the immobilized HRP exhibited direct electrochemical behavior toward the reduction of H2O2. The resulting biosensor shows a fast amperometric response (<2 s) to H2O2. The linear response range was from 5.0×10-7~1.0×10-5 mol/L with a detection limit of 1.0×10-7mol/L. Moreover, the biosensor has a good reproducibility, and long-term stability.
基金Funded by "Hundreds of Talents Program" of Hubei Province,China
文摘Long(15-40 μm), thin(diameter of 20 ± 5 nm), and well-dispersed CuNWs Cu nanowires were prepared. The high-resolution TEM and selected area electron diffraction showed that the CuNWs were single-crystalline. To investigate the growth mechanism, we examined the microstructure of these CuNWs at different reaction time. It was found that the CuNWs were actually formed through the self-assembling of Cu nanoparticles along the [110] direction. The transparent electrodes fabricated using the CuNWs achieved a high transparency of 76 % at 31±5 Ω/□.
基金This work was supported financially by Korea Environment Industry&Technology Institute through Project to make multi-ministerial national biological research resources more advanced program,funded by Korea Ministry of Environment(grant number RS-2023-00230403).
文摘Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCaT cells and zebrafish were used to evaluate the protective effects of the ethyl acetate fraction of Sargassum pallidum extract against PM-induced oxidative stress and inflammation.The production of nitric oxide(NO),intracellular ROS,prostaglandin E_(2)(PGE_(2)),and pro-inflammatory cytokines,and the expression levels of COX-2,iNOS,and NF-κB were evaluated in PM-induced HaCaT cells.Furthermore,the levels of ROS,NO,and lipid peroxidation were assessed in the PM-exposed zebrafish model.Results:The ethyl acetate fraction of Sargassum pallidum extract significantly decreased the production of NO,intracellular ROS,and PGE_(2) in PM-induced HaCaT cells.In addition,the fraction markedly suppressed the levels of pro-inflammatory cytokines and inhibited the expression levels of COX-2,iNOS,and NF-κB.Furthermore,it displayed remarkable protective effects against PM-induced inflammatory response and oxidative stress,represented by the reduction of NO,ROS,and lipid peroxidation in zebrafish.Conclusions:The ethyl acetate fraction of Sargassum pallidum extract exhibits a protective effect against PM-induced oxidative stress and inflammation both in vitro and in vivo and has the potential as a candidate for the development of pharmaceutical and cosmeceutical products.
文摘High-yielding low-cost vanadium oxide nanotubes were prepared by the hydrothermal self-assembling process from vanadium pentoxide and organic molecules as structure-directing templates.Moreover,a new method was discovered for determining the content of V (IV) in vanadium oxide nanotubes by thermogravimetric analysis (TGA).This method is simple,precise and feasible and can be extended to determine the content of low oxidation state in the other transition metal oxide nanomaterials.
基金Supported by the National Natural Science Foundation of China(41802177,42272188,42303056)PetroChina Prospective and Basic Technological Project(2022DJ0507)+1 种基金Research Fund of PetroChina Basic Scientific Research and Strategic Reserve Technology(2020D-5008-04)National Natural Science of Sichuan Province(23NSFSC546)。
文摘Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic composition,major and trace element contents,as well as petrology.Two zircon U-Pb ages of(306.0±5.2)Ma and(303.5±3.7)Ma were obtained from the first member of the Fengcheng Formation.Combined with carbon isotopic stratigraphy,it is inferred that the depositional age of the Fengcheng Formation is about 297-306 Ma,spanning the Carboniferous-Permian boundary and corresponding to the interglacial period between C4 and P1 glacial events.Multiple increases in Hg/TOC ratios and altered volcanic ash were found in the shale rocks of the Fengcheng Formation,indicating that multiple phases of volcanic activity occurred during its deposition.An interval with a high B/Ga ratio was found in the middle of the second member of the Fengcheng Formation,associated with the occurrence of evaporite minerals and reedmergnerite,indicating that the high salinity of the water mass was related to hydrothermal activity.Comprehensive analysis suggests that the warm and humid climate during the deposition of Fengcheng Formation is conducive to the growth of organic matter such as algae and bacteria in the lake,and accelerates the continental weathering,driving the input of nutrients.Volcanic activities supply a large amount of nutrients and stimulate primary productivity.The warm climate and high salinity are conducive to water stratification,leading to water anoxia that benefits organic matter preservation.The above factors interact and jointly control the enrichment of organic matter in the Fengcheng Formation of Mahu Sag.
文摘Self-assembling molecules are ubiquitous in nature, among which are proteins, nucleic acids (DNA and RNA), peptides and lipids. Recognizing the ability of biomolecules to self-assemble into various 3D shapes at the nanoscale, researchers are mimicking the self-assembly strategy for engineering of complex nanostructures. However, the general principles underlying the design of self-assembled molecules have not yet been identified. The question is “How to obtain a well-defined shape with desired properties by folding a chain of subunits (such as amino acids and nucleic acids)”, where properties are determined by the precise spatial arrangement of the subunits on the surface. In this paper, we consider the question from the viewpoint of the discrete differential geometry of n-simplices. Self-assembling molecules are then represented as a union of trajectories of 3-simplices (i.e., tetrahedrons), and the question is rephrased as a “boundary value problem” for flows on a space of tetrahedrons. Also considered is a characterization of two types of surface flows of n-simplices. It is a rough classification of surface flows, but may be essential in characterizing important properties of biomolecules such as allosteric regulation. The author believes this paper not only provides a new perspective for the engineering of self-assembling molecules, but also promotes further collaboration between mathematics and other disciplines in life science.
文摘The self-assembling behavior of random copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate (AMPS)and hydrophobic comonomers possessing dodecyl groups linked by various spacer bonds was discussed with a focus on theeffect of the spacer. The characterization of association behavior of such polymers in water using quasielastic light scattering,capillary electrophoresis, NMR relaxation, various fluorescence, and viscoelastic methods was described. These copolymersform a variety of self-assembled nanostructures depending on the type of the spacer. Random copolymers of AMPS and N-dodecylmethacrylamide show a strong preference for intrapolymer self-association even in concentrated aqueous solutionsforming single-macromolecular self-assemblies (unimolecular micelles). In contrast, random copolymers of AMPS anddodecyl methacrylate are prone to undergo interpolymer associations yielding multipolymer micelles. In random copolymersof AMPS and a methacrylate substituted a nonionic surfactant (HO(CH_2CH_2O)_(25)C_(12)H_(25)) (C_(12)E_(25)), dodecyl groups are muchless restricted by the polymer backbone because they are linked via a long, flexible hydrophilic spacer. Thus, the polymer-bound C_(12)E_(25) surfactant moieties form micelles similar to those formed by discrete surfactants, but they are bridged bypolymer chains forming a network structure.
文摘A sequential deposition method is developed, where the hybrid organic-inorganic halide perovskite (CH3NH3Pb (I1-xBrx)3 ) is synthesized using precursor solutions containing CH3NH3I and PbBr2 with different mole ratios and reaction times. The perovskite achieved here is quite stable in the atmosphere for a relatively long time without noticeable degradation, and the perovskite nanowires are proved to be single crystalline structure, based on transmission electron microscopy.Furthermore, strong red photoluminescence from perovskite is observed in the wavelength range from 746nm to 770nm with the increase of the reaction time, on account of the exchanges between I- ions and Br- ions in the perovskite crystal. Lastly, the influences of concentration and reaction time of the precursor solutions are discussed, which are important for evolution of hybrid perovskite from nanocuboid to nanowire and nanosheet.
文摘A novel amphiphile of 4-[4-(4-decyloxyphenylazo) naphthyloxy] butyl trimethylammonium bromide has been synthesized. It can form the stable bilayer in dilute aqueous solution.
基金financed by the National Natural Science Foundation of China(52103212)Jiangxi Provincial Natural Science Foundation(20224BAB214022)+7 种基金the SSF Synergy Program(EM16-0004)Swedish Energy Agency(EM 42033-1)the Knut and Alice Wal enberg(KAW)Foundation through a Fellowship Grant and a Project Grant(KAW2020.0033)Support from the National Natural Science Foundation of China(61774077)the Youth Projects of Joint Fund of Basic and Applied Basic Research Fund of Guangdong Province(2020A1515110738)the Key Projects of Joint Fund of Basic and Applied Basic Research Fund of Guangdong Province(2019B1515120073)the High-End Foreign Experts Project(G20200019046)the Guangzhou Key laboratory of Vacuum Coating Technologies and New Energy Materials Open Projects Fund(KFVE20200006)
文摘Supercapacitors based on two-dimensional MXene(Ti_(3)C_(2)T_(z))have shown extraordinary performance in ultrathin electrodes with low mass loading,but usually there is a significant reduction in high-rate performance as the thickness increases,caused by increasing ion diffusion limitation.Further limitations include restacking of the nanosheets,which makes it challenging to realize the full potential of these electrode materials.Herein,we demonstrate the design of a vertically aligned MXene hydrogel composite,achieved by thermal-assisted self-assembled gelation,for high-rate energy storage.The highly interconnected MXene network in the hydrogel architecture provides very good electron transport properties,and its vertical ion channel structure facilitates rapid ion transport.The resulting hydrogel electrode show excellent performance in both aqueous and organic electrolytes with respect to high capacitance,stability,and high-rate capability for up to 300μm thick electrodes,which represents a significant step toward practical applications.
基金financially supported by the National Key Research and Development Program of China (2021YFB3600403)the Fundamental Research Funds for the Central Universities (000-0903069032)。
文摘Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review discusses the driving forces behind the self-assembly process of perovskite NCs,and the commonly used self-assembly methods and different self-assembly structures are detailed.Subsequently,we summarize the collective optoelectronic properties and application areas of perovskite superlattice structures.Finally,we conclude with an outlook on the potential issues and future challenges in developing perovskite NCs.