MAX phases are gaining attention as precursors of two-dimensional MXenes that are intensively pursued in applications for electrochemical energy storage.Here,we report the preparation of V_(2)SnC MAX phase by the molt...MAX phases are gaining attention as precursors of two-dimensional MXenes that are intensively pursued in applications for electrochemical energy storage.Here,we report the preparation of V_(2)SnC MAX phase by the molten salt method.V_(2)SnC is investigated as a lithium storage anode,showing a high gravimetric capacity of 490 mAh g−1 and volumetric capacity of 570 mAh cm^(−3) as well as superior rate performance of 95 mAh g^(−1)(110 mAh cm^(−3))at 50 C,surpassing the ever-reported performance of MAX phase anodes.Sup-ported by operando X-ray diffraction and density functional theory,a charge storage mechanism with dual redox reaction is proposed with a Sn-Li(de)alloying reaction that occurs at the edge sites of V_(2)SnC particles where Sn atoms are exposed to the electrolyte followed by a redox reaction that occurs at V_(2)C layers with Li.This study offers promise of using MAX phases with M-site and A-site elements that are redox active as high-rate lithium storage materials.展开更多
In recent decades, the demand for lightweight and high specific strength materials brings about the development of magnesium matrix composites. Different from some traditional binary ceramic particles, such as SiC, Al...In recent decades, the demand for lightweight and high specific strength materials brings about the development of magnesium matrix composites. Different from some traditional binary ceramic particles, such as SiC, Al_(2)O_(3), the novel ternary nano-layered M_(n+1)AX_(n)(MAX)phase carbide or nitride ceramics exhibit metal-like properties and self-lubricate capacity(where “M” is an early transition metal, “A” belongs to the group A element, “X” is C or/and N, and n = 1–3). Ti_(2)AlC, as the representative of the MAX phase, was interestingly introduced into the magnesium matrix. Layered Ti_(2)AlC MAX phased reinforced AZ91D magnesium composites manufactured through the stir casting exhibit sufficient deformation capacity due to unique deformation behaviors of MAX, namely delamination and the formation of kinking band. Further,the Ti_(2)AlC-AZ91D composites exhibit a distinctive characteristic in strengthening mechanism, damping mechanism and tribological capacity due to the other special properties of MAX phase, such as self-lubricated property. Accordingly, to give a comprehensive understanding, we overviewed the fabrication process, microstructural characterization, mechanical properties, damping property and tribological capacity on these composites. In order to understand the A-site effect in MAX phase on the microstructure, we introduced another representative Ti_(3)SiC_(2)MAX phase to explain the interfacial evolution. In addition, due to the high aspect ratio of MAX, MAX particles could be orientationally regulated in Mg matrix by plastic deformation such as hot extrusion. Herein, we discussed the anisotropic mechanical and physical properties of the textured composites produced by hot extrusion. Moreover, the potential applications and future development trends of MAX phases reinforced magnesium matrix composites were also given and prospected.展开更多
The solid solution of (Cr2-xMnx)GaC with magnetic properties was synthesized by pressureless sintering.The composition,morphology,and magnetic properties of products were characterized by X-ray diffraction (XRD),scann...The solid solution of (Cr2-xMnx)GaC with magnetic properties was synthesized by pressureless sintering.The composition,morphology,and magnetic properties of products were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM),and vibrating sample magnetometer (VSM).The experimental results indicate that the solid solubility of Mn is related to the value of x,which reaches the maximum at x=0.4 and the characteristic peaks shift effect is most obvious.After the solution treatments,the samples of (Cr2-xMnx)GaC still presents the layered structure of MAX phase,and the lattice parameter has decreased slightly.By characterizing the magnetic properties of (Cr2-xMnx)GaC,the successful doping of Mn atoms was confirmed,and the intensity of magnetism was positively correlated with the doping amounts of Mn.展开更多
First-principles computation on the basis of density functional theory(DFT) is executed with the CASTEP code to explore the structural, elastic, and electronic properties along with Debye temperature and theoretical V...First-principles computation on the basis of density functional theory(DFT) is executed with the CASTEP code to explore the structural, elastic, and electronic properties along with Debye temperature and theoretical Vickers’ hardness of newly discovered ordered MAX phase carbide Mo2TiAlC2. The computed structural parameters are very reasonable compared with the experimental results. The mechanical stability is verified by using the computed elastic constants. The brittleness of the compound is indicated by both the Poisson’s and Pugh’s ratios. The new MAX phase is capable of resisting the pressure and tension and also has the clear directional bonding between atoms. The compound shows significant elastic anisotropy. The Debye temperature estimated from elastic moduli(B, G) is found to be 413.6 K. The electronic structure indicates that the bonding nature of Mo2TiAlC2is a mixture of covalent and metallic with few ionic characters. The electron charge density map shows a strong directional Mo–C–Mo covalent bonding associated with a relatively weak Ti–C bond.The calculated Fermi surface is due to the low-dispersive Mo 4d-like bands, which makes the compound a conductive one.The hardness of the compound is also evaluated and a high value of 9.01 GPa is an indication of its strong covalent bonding.展开更多
Defects engineering is an effective strategy for manipulating electromagnetic parameters and enhancing electromagnetic wave(EMW)absorption capacity.However,the relationship between them is not clear,especially in soli...Defects engineering is an effective strategy for manipulating electromagnetic parameters and enhancing electromagnetic wave(EMW)absorption capacity.However,the relationship between them is not clear,especially in solid solution structures.In this work,a series of(Cr_(1-x)V_(x))_(2)AlC MAX phase solid solutions with layered structure were prepared via tuning the ratio of Cr and V to explore their EMW absorption performance.The experimental results indicated that the doping of V atoms at the M-site could effectively regulate its impedance matching and EMW absorption properties by introducing appropriate numbers of defects in the crystal,such as twin boundaries,dislocations and lattice distortions.Among them,if Cr:V=3:1,Cr_(1.5)V_(0.5)AlC,as radar absorption materials,could reach a strong reflection loss of-51.8 dB at the frequency of 12.8 GHz under an ultra-thin thickness of 1.3 mm.The reflection loss value could attain-10 dB in a wide frequency range of 2.7-18 GHz and thickness range of 1-5 mm.In addition,after high temperature and acid-alkali immersion treatment,this sample still had good EMW absorption capability,and the effective absorption bandwidth was enhanced from 2.3 to 2.6 GHz after concentrated acid immersion or 3.1 GHz after concentrated alkali immersion.This work has great reference significance for the research and development of high-performance MAX-based EMW absorption materials in harsh environments.展开更多
MAX phases are a member of ternary carbide and nitride,with a layered crystal structure and a mixed nature of chemical bonds(covalent-ionic-metallic)that promote MAX phases embracing both ceramic and metal characteris...MAX phases are a member of ternary carbide and nitride,with a layered crystal structure and a mixed nature of chemical bonds(covalent-ionic-metallic)that promote MAX phases embracing both ceramic and metal characteristics.As a result,MAX phase ceramics emerge with remarkable properties unique from other traditional ceramics.In this review,we focus on alternate processing approaches for MAX phases that are cost-effective and energy-saving.The MAX phase purity,formation of other unwanted phases,microstructure,and properties are influenced by many parameters during processing.Therefore,we highlight the effect of numerous factors,which alternately diminish the efficiency and performance of materials.Here,the impact of several parameters,such as starting materials,stoichiometric composition,temperature,pressure,particle size,porosity,microstructure,mechanical alloying,mechanical activation,ion irradiation,and doping,are summarized to reveal their influence on the synthesis and properties of MAX phases.The potential applications of MAX phases are considered for their development on a commercial scale toward the industry.展开更多
One-dimensional(1D)metals are highly conductive and tend to form networks that facilitate electron hopping and migration.Hence,they have tremendous potential as microwave-absorbing(MA)materials.Traditionally,1D metals...One-dimensional(1D)metals are highly conductive and tend to form networks that facilitate electron hopping and migration.Hence,they have tremendous potential as microwave-absorbing(MA)materials.Traditionally,1D metals are mainly precious metals such as gold,silver,nickel,and their preparation methods often have low yield and are not environmentally friendly,which has limited the exploration in this area.Herein,the unique nanolaminate structure and chemical bond characteristics of Ti_(2)SnC MAX phase is successfully taken advantages for large-scale preparation of Sn whiskers,and then,core-sheath Sn/SnO_(x)heterojunctions are obtained by simply annealing at different temperatures.The heterojunction annealed at 500℃possesses favorable MA performance with an effective absorption bandwidth of 5.3 GHz(only 1.7 mm)and a minimum reflection loss value of51.97 dB;its maximum radar cross section(RCS)reduction value is 29.59 dB·m^(2),confirming its excellent electromagnetic wave attenuation ability.Off-axis electron holography is used to visually characterize the distribution of charge density at the cylindrical heterogenous interface,confirming the enhanced interfacial polarization effect.Given the diversity of MAX phases and the advantages of the fabrication method(e.g.,green,inexpensive,and easily scalable),this work provides significant guidance for the design of 1D metal-based absorbers.展开更多
MXenes,drawn from MAX phases,are special two-dimensional substances with numerous advantages in nonlinear optics,specifically in giant and ultrashort pulsed-laser applications.Ti_(3)C_(2)T_(x)and Ti_(2)CT_(x)nanosheet...MXenes,drawn from MAX phases,are special two-dimensional substances with numerous advantages in nonlinear optics,specifically in giant and ultrashort pulsed-laser applications.Ti_(3)C_(2)T_(x)and Ti_(2)CT_(x)nanosheets however rapidly deteriorate under ambient conditions,limiting their applications.This paper demonstrates how excellent modulation depth of one of the MAX phase compounds vanadium zinc carbide(V_2ZnC)makes it a brilliant saturable absorber(SA)in passively Q-switched all-fiber pulsed lasers,integrated such that a 16.73-μm V_(2)ZnC-polyvinyl alcohol(PVA)thin film acts as SA in the laser.Saturable and non-saturable absorptions were found to be 13.2%and 10.47%,while saturation optical intensity and modulation depth were 6.25 k W/cm^(2)and 12.43%,respectively,illustrating the optical nonlinearity.The superiority of MAX-PVA,fabricated in four distinct ratios,was demonstrated by the fact that it self-starts a giant pulsed laser at pump power as low as 22.5 mW and firmly accomplished 120.6 kHz repetition rate with a pulse width of 2.08μs.It is a fine SA for the use of pulsed-laser production using all-fiber laser due to fabrication simplicity and great optical,thermophysical,and mechanical qualities.展开更多
Herein,a novel kind of high-entropy MAX phases,(Mo_(0.25)Cr_(0.25)Ti_(0.25)V_(0.25))_(3)AlC_(2)powders were success-fully synthesized by a newly proposed two-step solid state reaction process.The oxidation experiments...Herein,a novel kind of high-entropy MAX phases,(Mo_(0.25)Cr_(0.25)Ti_(0.25)V_(0.25))_(3)AlC_(2)powders were success-fully synthesized by a newly proposed two-step solid state reaction process.The oxidation experiments demonstrate that the oxidation products of Al_(2)Mo_(3)O_(12) and rutile TiO 2 are formed at about 600 and 800℃,respectively.Besides,the dielectric and electromagnetic(EM)wave absorption properties of(Mo_(0.25)Cr_(0.25)Ti_(0.25)V_(0.25))_(3)AlC_(2)powders and those after oxidation at different temperatures were also exam-ined.The results show that the as-synthesized(Mo_(0.25)Cr_(0.25)Ti_(0.25)V_(0.25))_(3)AlC_(2)powders possess excellent EM wave absorption performances with the minimum reflection loss(RL)of-45.80 dB(at 1.7 mm thickness)and the maximum effective absorption bandwidth(E AB)of 3.6 GHz(at 1.5 mm thickness).After oxidation at 400-800℃,due to the coupling of conductivity loss and polarization loss,(Mo_(0.25)Cr_(0.25)Ti_(0.25)V_(0.25))_(3)AlC_(2)powders can retain good EM wave absorption properties in a certain frequency range.In this paper,the effects of oxidation on EM wave absorption properties of high-entropy MAX phases were systematically investigated for the first time.This work manifests that high-entropy MAX phases are promising EM wave absorbing candidates and can maintain good EM wave absorption performances after oxidation.展开更多
Medium-or high-entropy materials have great potential for applications due to their diverse compo-sitions and unexpected physicochemical properties.Herein,a novel medium-entropy(TiVNb)_(2)AlC was synthesized via hot p...Medium-or high-entropy materials have great potential for applications due to their diverse compo-sitions and unexpected physicochemical properties.Herein,a novel medium-entropy(TiVNb)_(2)AlC was synthesized via hot pressing at 1400℃from three individual M_(2)AlC(M=Ti,V,Nb)MAX phases.The microstructure of(TiVNb)_(2)AlC was characterized from the microscale to the atomic scale by scanning electron microscope microscopy(SEM),scanning transmission electron microscopy(STEM),and energy dispersive spectroscopy(EDS).The results showed that Ti,V,and Nb atoms were fully solid-soluble in the M-sites of the M_(2)AlC MAX phase.Compared with three individual MAX phases,the thermal conduc-tivity of(TiVNb)_(2)AlC was reduced greatly in the temperature range of 293-1473 K,and its mechanical properties(including Young’s modulus,Vickers hardness,and bending strength)were all increased due to the solid solution strengthening and electronic mechanism.展开更多
The interesting hybrid properties of ceramics and metals induced by unique nano-laminated structures make the M_(n+1)AX n(MAX)phase attractive as a potential protective coating for vital structural compo-nents in hars...The interesting hybrid properties of ceramics and metals induced by unique nano-laminated structures make the M_(n+1)AX n(MAX)phase attractive as a potential protective coating for vital structural compo-nents in harsh systems.However,an extremely narrow phase-forming region makes it difficult to prepare MAX phase coatings with high purity,which is required to obtain coatings with high-temperature anti-oxidation capabilities.This work describes the dependence of the phase evolution in deposited M-Al-C(M=Ti,V,Cr)coatings as a function on temperature using in-situ X-ray diffraction analysis.Compared to V_(2)AlC and Cr_(2)AlC MAX phase coatings,the Ti_(2)AlC coating displayed a higher phase-forming tempera-ture accompanied by a lack of any intermediate phases before the appearance of the Ti_(2)AlC MAX phase.The results of the first-principle calculations correlated with the experience in which Ti_(2)AlC exhibited the largest formation energy and density of states.The effect of the phase compositions of these three MAX phase coatings on mechanical properties were also investigated using ex-situ Vickers and nano-indenter tests,demonstrating the improved mechanical properties with good stability at high temperatures.These findings provide a deeper understanding of the phase-forming mechanism of MAX phase coatings to guide the preparation of high-purity MAX phase coatings and the optimization of MAX phase coatings with expected intermediate phases such as Cr_(2)C,V_(2)C etc.,as well as their application as protective coat-ings in temperature-related harsh environments.展开更多
MAX phases and its derived two-dimensional MXenes have attracted considerable interest because of their rich structural chemistry and multifunctional applications.Lewis acid molten salt route provides an opportunity f...MAX phases and its derived two-dimensional MXenes have attracted considerable interest because of their rich structural chemistry and multifunctional applications.Lewis acid molten salt route provides an opportunity for structure design and performance manipulation of new MAX phases and MXenes,Although a series of new MAX phases and MXenes were successfully prepared via Lewis acid melt route in recent years,few work is explored on nitride MAX phases and MXenes.Herein,a new copper-based 413-type Ti_(4)CuN_(3)MAX phase was synthesized through isomorphous replacement reaction using Ti_(4)CuN_(3)MAX phase precursor in molten CuCl2.In addition,it was found that at high temperature Ti4N3Clx MXene will transform into two-dimensional cubic TiNa nanosheets with improved structural stability.展开更多
321 phases are an atypical series of MAX phases,in which A=As/P,with superior elastic properties,fea-turing in the MA-triangular-prism bilayers in the crystal structure.Until now,besides Nb 3 As 2 C,the pure phases of...321 phases are an atypical series of MAX phases,in which A=As/P,with superior elastic properties,fea-turing in the MA-triangular-prism bilayers in the crystal structure.Until now,besides Nb 3 As 2 C,the pure phases of the other 321 compounds have not been realized,hampering the study of their intrinsic prop-erties.Here,molten-salt sintering(MSS)and solid-state synthesis(SSS)were applied to synthesize As/P-containing 321 phases and 211 phases.Analyzing the phase composition of the end-product via multiple-phase Rietveld refinement,we found that MSS can effectively improve the purity of P-containing MAX phases,with the phase content up to 99%in Nb_(3)P_(2)C and 75.4(5)%in Nb 2 PC.In contrast,MSS performed poorly on As-containing MAX phases,only 8.9(4)%for Nb 3 As 2 C and 64(2)%for Nb 2 AsC,as opposed to the pure phases obtained by SSS.The experimental analyses combined with first-principles calculations reveal that the dominant formation route of Nb_(3)P_(2)C is through NbP+Nb+C→Nb_(3)P_(2)C.Moreover,we found that the benefits of MSS on P-containing MAX phases are on the facilitation of three consid-ered chemical reaction routes,especially on Nb 2 PC+NbP→Nb_(3)P_(2)C.Furthermore,the intrinsic physical properties and Fermi surface topology of two 321 phases consisting of electron,hole,and open orbits are revealed theoretically and experimentally,in which the electron carriers are dominant in electrical trans-port.The feasible synthesis methods and the formation mechanism are instructive to obtain high-purity As/P-containing MAX phases and explore new MAX phases.Meanwhile,the intrinsic physical properties will give great support for future applications on 321 phases.展开更多
Due to the excellent corrosion resistance and high irradiation damage resistance,Ti 2AlC MAX phase is considered as a candidate for applications as corrosion resistant and irradiation resistant protective coating.MAX ...Due to the excellent corrosion resistance and high irradiation damage resistance,Ti 2AlC MAX phase is considered as a candidate for applications as corrosion resistant and irradiation resistant protective coating.MAX phase coatings can be fabricated through firstly depositing a coating containing the three elements M,A,and X close to stoichiometry of the MAX phases using physical vapor deposition,followed by heat treatment in vacuum.In this work,Ti-Al-C coating was prepared on austenitic stainless steels by reactive DC magnetron sputtering with a compound Ti (50)Al (50) target,and CH4 used as the reactive gas.It was found that the as-deposited coating is mainly composed of Ti 3AlC antiperovskite phase with supersaturated solid solution of Al.Additionally,the ratio of Ti/Al remained the same as that of the target composition.Nevertheless,a thicker thermally grown Ti 2AlC MAX phase coating was obtained after being annealed at 800℃ in vacuum for 1 h.Meanwhile,the ratio of Ti/Al became close to stoichiometry of Ti 2AlC MAX phases.It can be understood that owing to the higher activity of Al,it diffused quickly into the substrate during annealing,and then more stable Ti 2AlC MAX phases transformed from the Ti 3AlC antiperovskite phase.展开更多
基金supported by the National Natural Science Foundation of China(Grants No.51902215,91426304,21671195,21805295,51902320,51902319,21875271,and U2004212)the China Postdoctoral Science Foundation(Grant No.2020M680082)+7 种基金the International Partnership Program of Chinese Academy of Sciences(Grants 174433KYSB20190019)the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(Grant No.2019R01003)the Ningbo top-talent team program for financial supportsupport from the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Link?ping University(Faculty Grant SFO Mat LiU No.200900971)support of the electron microscopy laboratory in Link?ping(Grant KAW 2015.0043)an Academy Fellow Grant(P.E.,2020.0196)the Swedish Foundation for Strategic Research(SSF)through project funding(EM16-0004)a Research Infrastructure Fellow Grant(RIF 14-0074)。
文摘MAX phases are gaining attention as precursors of two-dimensional MXenes that are intensively pursued in applications for electrochemical energy storage.Here,we report the preparation of V_(2)SnC MAX phase by the molten salt method.V_(2)SnC is investigated as a lithium storage anode,showing a high gravimetric capacity of 490 mAh g−1 and volumetric capacity of 570 mAh cm^(−3) as well as superior rate performance of 95 mAh g^(−1)(110 mAh cm^(−3))at 50 C,surpassing the ever-reported performance of MAX phase anodes.Sup-ported by operando X-ray diffraction and density functional theory,a charge storage mechanism with dual redox reaction is proposed with a Sn-Li(de)alloying reaction that occurs at the edge sites of V_(2)SnC particles where Sn atoms are exposed to the electrolyte followed by a redox reaction that occurs at V_(2)C layers with Li.This study offers promise of using MAX phases with M-site and A-site elements that are redox active as high-rate lithium storage materials.
基金supported by the National Natural Science Foundation of China (No. 52175284, 52130509 and 52075543)the State Key Lab of Advanced Metmals and Materials (2021-ZD08)。
文摘In recent decades, the demand for lightweight and high specific strength materials brings about the development of magnesium matrix composites. Different from some traditional binary ceramic particles, such as SiC, Al_(2)O_(3), the novel ternary nano-layered M_(n+1)AX_(n)(MAX)phase carbide or nitride ceramics exhibit metal-like properties and self-lubricate capacity(where “M” is an early transition metal, “A” belongs to the group A element, “X” is C or/and N, and n = 1–3). Ti_(2)AlC, as the representative of the MAX phase, was interestingly introduced into the magnesium matrix. Layered Ti_(2)AlC MAX phased reinforced AZ91D magnesium composites manufactured through the stir casting exhibit sufficient deformation capacity due to unique deformation behaviors of MAX, namely delamination and the formation of kinking band. Further,the Ti_(2)AlC-AZ91D composites exhibit a distinctive characteristic in strengthening mechanism, damping mechanism and tribological capacity due to the other special properties of MAX phase, such as self-lubricated property. Accordingly, to give a comprehensive understanding, we overviewed the fabrication process, microstructural characterization, mechanical properties, damping property and tribological capacity on these composites. In order to understand the A-site effect in MAX phase on the microstructure, we introduced another representative Ti_(3)SiC_(2)MAX phase to explain the interfacial evolution. In addition, due to the high aspect ratio of MAX, MAX particles could be orientationally regulated in Mg matrix by plastic deformation such as hot extrusion. Herein, we discussed the anisotropic mechanical and physical properties of the textured composites produced by hot extrusion. Moreover, the potential applications and future development trends of MAX phases reinforced magnesium matrix composites were also given and prospected.
基金the Foundation for Hubei Provincial Key Laboratory of Green Materials for Light Industry(No.201710A15)。
文摘The solid solution of (Cr2-xMnx)GaC with magnetic properties was synthesized by pressureless sintering.The composition,morphology,and magnetic properties of products were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM),and vibrating sample magnetometer (VSM).The experimental results indicate that the solid solubility of Mn is related to the value of x,which reaches the maximum at x=0.4 and the characteristic peaks shift effect is most obvious.After the solution treatments,the samples of (Cr2-xMnx)GaC still presents the layered structure of MAX phase,and the lattice parameter has decreased slightly.By characterizing the magnetic properties of (Cr2-xMnx)GaC,the successful doping of Mn atoms was confirmed,and the intensity of magnetism was positively correlated with the doping amounts of Mn.
文摘First-principles computation on the basis of density functional theory(DFT) is executed with the CASTEP code to explore the structural, elastic, and electronic properties along with Debye temperature and theoretical Vickers’ hardness of newly discovered ordered MAX phase carbide Mo2TiAlC2. The computed structural parameters are very reasonable compared with the experimental results. The mechanical stability is verified by using the computed elastic constants. The brittleness of the compound is indicated by both the Poisson’s and Pugh’s ratios. The new MAX phase is capable of resisting the pressure and tension and also has the clear directional bonding between atoms. The compound shows significant elastic anisotropy. The Debye temperature estimated from elastic moduli(B, G) is found to be 413.6 K. The electronic structure indicates that the bonding nature of Mo2TiAlC2is a mixture of covalent and metallic with few ionic characters. The electron charge density map shows a strong directional Mo–C–Mo covalent bonding associated with a relatively weak Ti–C bond.The calculated Fermi surface is due to the low-dispersive Mo 4d-like bands, which makes the compound a conductive one.The hardness of the compound is also evaluated and a high value of 9.01 GPa is an indication of its strong covalent bonding.
基金financially supported by the National Natural Science Foundation of China(Nos.52275187 and 52202364)Natural Science Foundation of Henan(No.232300421135)+1 种基金Fundamental Research Funds for the Universities of Henan Province(No.NSFRF200101)Henan Postdoctoral Foundation(No.202101035)。
文摘Defects engineering is an effective strategy for manipulating electromagnetic parameters and enhancing electromagnetic wave(EMW)absorption capacity.However,the relationship between them is not clear,especially in solid solution structures.In this work,a series of(Cr_(1-x)V_(x))_(2)AlC MAX phase solid solutions with layered structure were prepared via tuning the ratio of Cr and V to explore their EMW absorption performance.The experimental results indicated that the doping of V atoms at the M-site could effectively regulate its impedance matching and EMW absorption properties by introducing appropriate numbers of defects in the crystal,such as twin boundaries,dislocations and lattice distortions.Among them,if Cr:V=3:1,Cr_(1.5)V_(0.5)AlC,as radar absorption materials,could reach a strong reflection loss of-51.8 dB at the frequency of 12.8 GHz under an ultra-thin thickness of 1.3 mm.The reflection loss value could attain-10 dB in a wide frequency range of 2.7-18 GHz and thickness range of 1-5 mm.In addition,after high temperature and acid-alkali immersion treatment,this sample still had good EMW absorption capability,and the effective absorption bandwidth was enhanced from 2.3 to 2.6 GHz after concentrated acid immersion or 3.1 GHz after concentrated alkali immersion.This work has great reference significance for the research and development of high-performance MAX-based EMW absorption materials in harsh environments.
基金supported by the National Natural Sciences Foundation of China(52072311).
文摘MAX phases are a member of ternary carbide and nitride,with a layered crystal structure and a mixed nature of chemical bonds(covalent-ionic-metallic)that promote MAX phases embracing both ceramic and metal characteristics.As a result,MAX phase ceramics emerge with remarkable properties unique from other traditional ceramics.In this review,we focus on alternate processing approaches for MAX phases that are cost-effective and energy-saving.The MAX phase purity,formation of other unwanted phases,microstructure,and properties are influenced by many parameters during processing.Therefore,we highlight the effect of numerous factors,which alternately diminish the efficiency and performance of materials.Here,the impact of several parameters,such as starting materials,stoichiometric composition,temperature,pressure,particle size,porosity,microstructure,mechanical alloying,mechanical activation,ion irradiation,and doping,are summarized to reveal their influence on the synthesis and properties of MAX phases.The potential applications of MAX phases are considered for their development on a commercial scale toward the industry.
基金supported by the National Natural Science Foundation of China(52171033)the Natural Science Foundation of Jiangsu Province(BK20201283).
文摘One-dimensional(1D)metals are highly conductive and tend to form networks that facilitate electron hopping and migration.Hence,they have tremendous potential as microwave-absorbing(MA)materials.Traditionally,1D metals are mainly precious metals such as gold,silver,nickel,and their preparation methods often have low yield and are not environmentally friendly,which has limited the exploration in this area.Herein,the unique nanolaminate structure and chemical bond characteristics of Ti_(2)SnC MAX phase is successfully taken advantages for large-scale preparation of Sn whiskers,and then,core-sheath Sn/SnO_(x)heterojunctions are obtained by simply annealing at different temperatures.The heterojunction annealed at 500℃possesses favorable MA performance with an effective absorption bandwidth of 5.3 GHz(only 1.7 mm)and a minimum reflection loss value of51.97 dB;its maximum radar cross section(RCS)reduction value is 29.59 dB·m^(2),confirming its excellent electromagnetic wave attenuation ability.Off-axis electron holography is used to visually characterize the distribution of charge density at the cylindrical heterogenous interface,confirming the enhanced interfacial polarization effect.Given the diversity of MAX phases and the advantages of the fabrication method(e.g.,green,inexpensive,and easily scalable),this work provides significant guidance for the design of 1D metal-based absorbers.
基金supported by the Ministry of Higher under Fundamental Research Grant Scheme(No.FRGS/1/2020/TK0/UTM/02/46)Nippon Sheet Glass Grant(No.R.K130000.7343.4B818)。
文摘MXenes,drawn from MAX phases,are special two-dimensional substances with numerous advantages in nonlinear optics,specifically in giant and ultrashort pulsed-laser applications.Ti_(3)C_(2)T_(x)and Ti_(2)CT_(x)nanosheets however rapidly deteriorate under ambient conditions,limiting their applications.This paper demonstrates how excellent modulation depth of one of the MAX phase compounds vanadium zinc carbide(V_2ZnC)makes it a brilliant saturable absorber(SA)in passively Q-switched all-fiber pulsed lasers,integrated such that a 16.73-μm V_(2)ZnC-polyvinyl alcohol(PVA)thin film acts as SA in the laser.Saturable and non-saturable absorptions were found to be 13.2%and 10.47%,while saturation optical intensity and modulation depth were 6.25 k W/cm^(2)and 12.43%,respectively,illustrating the optical nonlinearity.The superiority of MAX-PVA,fabricated in four distinct ratios,was demonstrated by the fact that it self-starts a giant pulsed laser at pump power as low as 22.5 mW and firmly accomplished 120.6 kHz repetition rate with a pulse width of 2.08μs.It is a fine SA for the use of pulsed-laser production using all-fiber laser due to fabrication simplicity and great optical,thermophysical,and mechanical qualities.
基金This work was financially supported by the Major Basic Re-search Projects of Shandong Natural Science Foundation(No.ZR2018ZB0104)the Science and Technology Development Project of Shandong Province(Nos.2016GGX102003,2017GGX20105)the Natural Science Foundation of Shandong Province(No.ZR2017BEM032).
文摘Herein,a novel kind of high-entropy MAX phases,(Mo_(0.25)Cr_(0.25)Ti_(0.25)V_(0.25))_(3)AlC_(2)powders were success-fully synthesized by a newly proposed two-step solid state reaction process.The oxidation experiments demonstrate that the oxidation products of Al_(2)Mo_(3)O_(12) and rutile TiO 2 are formed at about 600 and 800℃,respectively.Besides,the dielectric and electromagnetic(EM)wave absorption properties of(Mo_(0.25)Cr_(0.25)Ti_(0.25)V_(0.25))_(3)AlC_(2)powders and those after oxidation at different temperatures were also exam-ined.The results show that the as-synthesized(Mo_(0.25)Cr_(0.25)Ti_(0.25)V_(0.25))_(3)AlC_(2)powders possess excellent EM wave absorption performances with the minimum reflection loss(RL)of-45.80 dB(at 1.7 mm thickness)and the maximum effective absorption bandwidth(E AB)of 3.6 GHz(at 1.5 mm thickness).After oxidation at 400-800℃,due to the coupling of conductivity loss and polarization loss,(Mo_(0.25)Cr_(0.25)Ti_(0.25)V_(0.25))_(3)AlC_(2)powders can retain good EM wave absorption properties in a certain frequency range.In this paper,the effects of oxidation on EM wave absorption properties of high-entropy MAX phases were systematically investigated for the first time.This work manifests that high-entropy MAX phases are promising EM wave absorbing candidates and can maintain good EM wave absorption performances after oxidation.
基金This work was supported by the National Natural Science Foun-dation of China(Grant No.52071318)and the Fund of Science and Technology on Advanced Functional Composites Laboratory(Grant No.6142906210305).
文摘Medium-or high-entropy materials have great potential for applications due to their diverse compo-sitions and unexpected physicochemical properties.Herein,a novel medium-entropy(TiVNb)_(2)AlC was synthesized via hot pressing at 1400℃from three individual M_(2)AlC(M=Ti,V,Nb)MAX phases.The microstructure of(TiVNb)_(2)AlC was characterized from the microscale to the atomic scale by scanning electron microscope microscopy(SEM),scanning transmission electron microscopy(STEM),and energy dispersive spectroscopy(EDS).The results showed that Ti,V,and Nb atoms were fully solid-soluble in the M-sites of the M_(2)AlC MAX phase.Compared with three individual MAX phases,the thermal conduc-tivity of(TiVNb)_(2)AlC was reduced greatly in the temperature range of 293-1473 K,and its mechanical properties(including Young’s modulus,Vickers hardness,and bending strength)were all increased due to the solid solution strengthening and electronic mechanism.
基金financially supported by the National Natural Science Foundation of China (Nos.52025014,52171090,52101109,U22A20111).
文摘The interesting hybrid properties of ceramics and metals induced by unique nano-laminated structures make the M_(n+1)AX n(MAX)phase attractive as a potential protective coating for vital structural compo-nents in harsh systems.However,an extremely narrow phase-forming region makes it difficult to prepare MAX phase coatings with high purity,which is required to obtain coatings with high-temperature anti-oxidation capabilities.This work describes the dependence of the phase evolution in deposited M-Al-C(M=Ti,V,Cr)coatings as a function on temperature using in-situ X-ray diffraction analysis.Compared to V_(2)AlC and Cr_(2)AlC MAX phase coatings,the Ti_(2)AlC coating displayed a higher phase-forming tempera-ture accompanied by a lack of any intermediate phases before the appearance of the Ti_(2)AlC MAX phase.The results of the first-principle calculations correlated with the experience in which Ti_(2)AlC exhibited the largest formation energy and density of states.The effect of the phase compositions of these three MAX phase coatings on mechanical properties were also investigated using ex-situ Vickers and nano-indenter tests,demonstrating the improved mechanical properties with good stability at high temperatures.These findings provide a deeper understanding of the phase-forming mechanism of MAX phase coatings to guide the preparation of high-purity MAX phase coatings and the optimization of MAX phase coatings with expected intermediate phases such as Cr_(2)C,V_(2)C etc.,as well as their application as protective coat-ings in temperature-related harsh environments.
基金supported by“Pioneer”and“Leading Goose”R&D Program of Zhejiang(Grant No.2022C01236)National Natural Science Foundation of China(No.52202325,52162020,52172254,U2004212)+3 种基金International Partnership Program of Chinese Academy of Sciences(Grant No.174433KYSB20190019)Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(Grant No.2019R01003)Zhejiang Province Natural Science Foundation of China(No.LQ22E020008)Ningbo Top-talent Team Program,and China Postdoctoral Science Foundation(Grant No.2020M680082).
文摘MAX phases and its derived two-dimensional MXenes have attracted considerable interest because of their rich structural chemistry and multifunctional applications.Lewis acid molten salt route provides an opportunity for structure design and performance manipulation of new MAX phases and MXenes,Although a series of new MAX phases and MXenes were successfully prepared via Lewis acid melt route in recent years,few work is explored on nitride MAX phases and MXenes.Herein,a new copper-based 413-type Ti_(4)CuN_(3)MAX phase was synthesized through isomorphous replacement reaction using Ti_(4)CuN_(3)MAX phase precursor in molten CuCl2.In addition,it was found that at high temperature Ti4N3Clx MXene will transform into two-dimensional cubic TiNa nanosheets with improved structural stability.
基金supported by the National Science Foundation for Young Scientists of China(No.51902055)the Natural Science Foundation of Fujian Province(Nos.2021J011077,2021J05224,and 2020J01898).
文摘321 phases are an atypical series of MAX phases,in which A=As/P,with superior elastic properties,fea-turing in the MA-triangular-prism bilayers in the crystal structure.Until now,besides Nb 3 As 2 C,the pure phases of the other 321 compounds have not been realized,hampering the study of their intrinsic prop-erties.Here,molten-salt sintering(MSS)and solid-state synthesis(SSS)were applied to synthesize As/P-containing 321 phases and 211 phases.Analyzing the phase composition of the end-product via multiple-phase Rietveld refinement,we found that MSS can effectively improve the purity of P-containing MAX phases,with the phase content up to 99%in Nb_(3)P_(2)C and 75.4(5)%in Nb 2 PC.In contrast,MSS performed poorly on As-containing MAX phases,only 8.9(4)%for Nb 3 As 2 C and 64(2)%for Nb 2 AsC,as opposed to the pure phases obtained by SSS.The experimental analyses combined with first-principles calculations reveal that the dominant formation route of Nb_(3)P_(2)C is through NbP+Nb+C→Nb_(3)P_(2)C.Moreover,we found that the benefits of MSS on P-containing MAX phases are on the facilitation of three consid-ered chemical reaction routes,especially on Nb 2 PC+NbP→Nb_(3)P_(2)C.Furthermore,the intrinsic physical properties and Fermi surface topology of two 321 phases consisting of electron,hole,and open orbits are revealed theoretically and experimentally,in which the electron carriers are dominant in electrical trans-port.The feasible synthesis methods and the formation mechanism are instructive to obtain high-purity As/P-containing MAX phases and explore new MAX phases.Meanwhile,the intrinsic physical properties will give great support for future applications on 321 phases.
基金supported by the National Natural Science Foundation of China (Grant No.51522106 and Grant No.51401229)the National Science and Technology Major Project of China (Grant No.2015ZX06004-001)the Ningbo Municipal Natural Science Foundation (Grant No.2014A610013)
文摘Due to the excellent corrosion resistance and high irradiation damage resistance,Ti 2AlC MAX phase is considered as a candidate for applications as corrosion resistant and irradiation resistant protective coating.MAX phase coatings can be fabricated through firstly depositing a coating containing the three elements M,A,and X close to stoichiometry of the MAX phases using physical vapor deposition,followed by heat treatment in vacuum.In this work,Ti-Al-C coating was prepared on austenitic stainless steels by reactive DC magnetron sputtering with a compound Ti (50)Al (50) target,and CH4 used as the reactive gas.It was found that the as-deposited coating is mainly composed of Ti 3AlC antiperovskite phase with supersaturated solid solution of Al.Additionally,the ratio of Ti/Al remained the same as that of the target composition.Nevertheless,a thicker thermally grown Ti 2AlC MAX phase coating was obtained after being annealed at 800℃ in vacuum for 1 h.Meanwhile,the ratio of Ti/Al became close to stoichiometry of Ti 2AlC MAX phases.It can be understood that owing to the higher activity of Al,it diffused quickly into the substrate during annealing,and then more stable Ti 2AlC MAX phases transformed from the Ti 3AlC antiperovskite phase.