期刊文献+
共找到190篇文章
< 1 2 10 >
每页显示 20 50 100
Electrochemical Lithium Storage Performance of Molten Salt Derived V_(2)SnC MAX Phase 被引量:4
1
作者 Youbing Li Guoliang Ma +18 位作者 Hui Shao Peng Xiao Jun Lu Jin Xu Jinrong Hou Ke Chen Xiao Zhang Mian Li Per OÅPersson Lars Hultman Per Eklund Shiyu Du Zhifang Chai Zhengren Huang Na Jin Jiwei Ma Ying Liu Zifeng Lin Qing Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第10期266-275,共10页
MAX phases are gaining attention as precursors of two-dimensional MXenes that are intensively pursued in applications for electrochemical energy storage.Here,we report the preparation of V_(2)SnC MAX phase by the molt... MAX phases are gaining attention as precursors of two-dimensional MXenes that are intensively pursued in applications for electrochemical energy storage.Here,we report the preparation of V_(2)SnC MAX phase by the molten salt method.V_(2)SnC is investigated as a lithium storage anode,showing a high gravimetric capacity of 490 mAh g−1 and volumetric capacity of 570 mAh cm^(−3) as well as superior rate performance of 95 mAh g^(−1)(110 mAh cm^(−3))at 50 C,surpassing the ever-reported performance of MAX phase anodes.Sup-ported by operando X-ray diffraction and density functional theory,a charge storage mechanism with dual redox reaction is proposed with a Sn-Li(de)alloying reaction that occurs at the edge sites of V_(2)SnC particles where Sn atoms are exposed to the electrolyte followed by a redox reaction that occurs at V_(2)C layers with Li.This study offers promise of using MAX phases with M-site and A-site elements that are redox active as high-rate lithium storage materials. 展开更多
关键词 max phase Molten salt Lithium storage High-rate Energy storage
下载PDF
A review of novel ternary nano-layered MAX phases reinforced AZ91D magnesium composite 被引量:3
2
作者 Wantong Chen Wenbo Yu +3 位作者 Chaosheng Ma Guozheng Ma Laiqi Zhang Haidou Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第6期1457-1475,共19页
In recent decades, the demand for lightweight and high specific strength materials brings about the development of magnesium matrix composites. Different from some traditional binary ceramic particles, such as SiC, Al... In recent decades, the demand for lightweight and high specific strength materials brings about the development of magnesium matrix composites. Different from some traditional binary ceramic particles, such as SiC, Al_(2)O_(3), the novel ternary nano-layered M_(n+1)AX_(n)(MAX)phase carbide or nitride ceramics exhibit metal-like properties and self-lubricate capacity(where “M” is an early transition metal, “A” belongs to the group A element, “X” is C or/and N, and n = 1–3). Ti_(2)AlC, as the representative of the MAX phase, was interestingly introduced into the magnesium matrix. Layered Ti_(2)AlC MAX phased reinforced AZ91D magnesium composites manufactured through the stir casting exhibit sufficient deformation capacity due to unique deformation behaviors of MAX, namely delamination and the formation of kinking band. Further,the Ti_(2)AlC-AZ91D composites exhibit a distinctive characteristic in strengthening mechanism, damping mechanism and tribological capacity due to the other special properties of MAX phase, such as self-lubricated property. Accordingly, to give a comprehensive understanding, we overviewed the fabrication process, microstructural characterization, mechanical properties, damping property and tribological capacity on these composites. In order to understand the A-site effect in MAX phase on the microstructure, we introduced another representative Ti_(3)SiC_(2)MAX phase to explain the interfacial evolution. In addition, due to the high aspect ratio of MAX, MAX particles could be orientationally regulated in Mg matrix by plastic deformation such as hot extrusion. Herein, we discussed the anisotropic mechanical and physical properties of the textured composites produced by hot extrusion. Moreover, the potential applications and future development trends of MAX phases reinforced magnesium matrix composites were also given and prospected. 展开更多
关键词 Ternary max phases Magnesium composite Damping Mechanical properties Anisotropic Tribological capacity
下载PDF
Synthesis and Characterization of Magnetic MAX Phase(Cr2-xMnx)GaC 被引量:2
3
作者 YAN Ming LI Chao +1 位作者 ZOU Yunqi YANG Mengliu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第2期363-367,共5页
The solid solution of (Cr2-xMnx)GaC with magnetic properties was synthesized by pressureless sintering.The composition,morphology,and magnetic properties of products were characterized by X-ray diffraction (XRD),scann... The solid solution of (Cr2-xMnx)GaC with magnetic properties was synthesized by pressureless sintering.The composition,morphology,and magnetic properties of products were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM),and vibrating sample magnetometer (VSM).The experimental results indicate that the solid solubility of Mn is related to the value of x,which reaches the maximum at x=0.4 and the characteristic peaks shift effect is most obvious.After the solution treatments,the samples of (Cr2-xMnx)GaC still presents the layered structure of MAX phase,and the lattice parameter has decreased slightly.By characterizing the magnetic properties of (Cr2-xMnx)GaC,the successful doping of Mn atoms was confirmed,and the intensity of magnetism was positively correlated with the doping amounts of Mn. 展开更多
关键词 max phase Cr2GaC SINTERING solid solution MAGNETIC
下载PDF
New ordered MAX phase Mo_2 TiAlC_2: Elastic and electronic properties from first-principles
4
作者 M A Hadi M S Ali 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第10期323-329,共7页
First-principles computation on the basis of density functional theory(DFT) is executed with the CASTEP code to explore the structural, elastic, and electronic properties along with Debye temperature and theoretical V... First-principles computation on the basis of density functional theory(DFT) is executed with the CASTEP code to explore the structural, elastic, and electronic properties along with Debye temperature and theoretical Vickers’ hardness of newly discovered ordered MAX phase carbide Mo2TiAlC2. The computed structural parameters are very reasonable compared with the experimental results. The mechanical stability is verified by using the computed elastic constants. The brittleness of the compound is indicated by both the Poisson’s and Pugh’s ratios. The new MAX phase is capable of resisting the pressure and tension and also has the clear directional bonding between atoms. The compound shows significant elastic anisotropy. The Debye temperature estimated from elastic moduli(B, G) is found to be 413.6 K. The electronic structure indicates that the bonding nature of Mo2TiAlC2is a mixture of covalent and metallic with few ionic characters. The electron charge density map shows a strong directional Mo–C–Mo covalent bonding associated with a relatively weak Ti–C bond.The calculated Fermi surface is due to the low-dispersive Mo 4d-like bands, which makes the compound a conductive one.The hardness of the compound is also evaluated and a high value of 9.01 GPa is an indication of its strong covalent bonding. 展开更多
关键词 new ordered max phase density functional theory calculations Debye temperature Vickers hardness
下载PDF
Solid solution strategy modulated defects engineering of(Cr_(1-x)V_(x))_(2)AlC MAX phase toward superior electromagnetic wave absorption
5
作者 Ji-Lin Gou Yu-Kai Chang +8 位作者 Shu Liu Peng-Hui Li Ping-Hao Cui Qian-Ku Hu Li-Bo Wang Xin Zhang Jun-Kai Wang Qi-Xun Xia Ai-Guo Zhou 《Rare Metals》 SCIE EI CAS CSCD 2024年第7期3205-3219,共15页
Defects engineering is an effective strategy for manipulating electromagnetic parameters and enhancing electromagnetic wave(EMW)absorption capacity.However,the relationship between them is not clear,especially in soli... Defects engineering is an effective strategy for manipulating electromagnetic parameters and enhancing electromagnetic wave(EMW)absorption capacity.However,the relationship between them is not clear,especially in solid solution structures.In this work,a series of(Cr_(1-x)V_(x))_(2)AlC MAX phase solid solutions with layered structure were prepared via tuning the ratio of Cr and V to explore their EMW absorption performance.The experimental results indicated that the doping of V atoms at the M-site could effectively regulate its impedance matching and EMW absorption properties by introducing appropriate numbers of defects in the crystal,such as twin boundaries,dislocations and lattice distortions.Among them,if Cr:V=3:1,Cr_(1.5)V_(0.5)AlC,as radar absorption materials,could reach a strong reflection loss of-51.8 dB at the frequency of 12.8 GHz under an ultra-thin thickness of 1.3 mm.The reflection loss value could attain-10 dB in a wide frequency range of 2.7-18 GHz and thickness range of 1-5 mm.In addition,after high temperature and acid-alkali immersion treatment,this sample still had good EMW absorption capability,and the effective absorption bandwidth was enhanced from 2.3 to 2.6 GHz after concentrated acid immersion or 3.1 GHz after concentrated alkali immersion.This work has great reference significance for the research and development of high-performance MAX-based EMW absorption materials in harsh environments. 展开更多
关键词 max phases Solid solution Defects engineering Electromagnetic wave absorption Harsh environments
原文传递
Factors influencing synthesis and properties of MAX phases
6
作者 Maaz Ullah Khan Sumair Ahmed Soomro +4 位作者 Muhammad Irfan Jahanger Yanchun Zhou Longsheng Chu Qingguo Feng Chunfeng Hu 《Science China Materials》 SCIE EI CAS CSCD 2024年第11期3427-3455,共29页
MAX phases are a member of ternary carbide and nitride,with a layered crystal structure and a mixed nature of chemical bonds(covalent-ionic-metallic)that promote MAX phases embracing both ceramic and metal characteris... MAX phases are a member of ternary carbide and nitride,with a layered crystal structure and a mixed nature of chemical bonds(covalent-ionic-metallic)that promote MAX phases embracing both ceramic and metal characteristics.As a result,MAX phase ceramics emerge with remarkable properties unique from other traditional ceramics.In this review,we focus on alternate processing approaches for MAX phases that are cost-effective and energy-saving.The MAX phase purity,formation of other unwanted phases,microstructure,and properties are influenced by many parameters during processing.Therefore,we highlight the effect of numerous factors,which alternately diminish the efficiency and performance of materials.Here,the impact of several parameters,such as starting materials,stoichiometric composition,temperature,pressure,particle size,porosity,microstructure,mechanical alloying,mechanical activation,ion irradiation,and doping,are summarized to reveal their influence on the synthesis and properties of MAX phases.The potential applications of MAX phases are considered for their development on a commercial scale toward the industry. 展开更多
关键词 max phase ceramics synthesis route PROPERTIES applications
原文传递
One-dimensional core-sheath Sn/SnO_(x)derived from MAX phase for microwave absorption
7
作者 Feiyue Hu Peigen Zhang +7 位作者 Fushuo Wu Zhihua Tian Haifeng Tang Bingbing Fan Rui Zhang Wenwen Sun Longzhu Cai Zheng Ming Sun 《Journal of Materiomics》 SCIE CSCD 2024年第3期531-542,共12页
One-dimensional(1D)metals are highly conductive and tend to form networks that facilitate electron hopping and migration.Hence,they have tremendous potential as microwave-absorbing(MA)materials.Traditionally,1D metals... One-dimensional(1D)metals are highly conductive and tend to form networks that facilitate electron hopping and migration.Hence,they have tremendous potential as microwave-absorbing(MA)materials.Traditionally,1D metals are mainly precious metals such as gold,silver,nickel,and their preparation methods often have low yield and are not environmentally friendly,which has limited the exploration in this area.Herein,the unique nanolaminate structure and chemical bond characteristics of Ti_(2)SnC MAX phase is successfully taken advantages for large-scale preparation of Sn whiskers,and then,core-sheath Sn/SnO_(x)heterojunctions are obtained by simply annealing at different temperatures.The heterojunction annealed at 500℃possesses favorable MA performance with an effective absorption bandwidth of 5.3 GHz(only 1.7 mm)and a minimum reflection loss value of51.97 dB;its maximum radar cross section(RCS)reduction value is 29.59 dB·m^(2),confirming its excellent electromagnetic wave attenuation ability.Off-axis electron holography is used to visually characterize the distribution of charge density at the cylindrical heterogenous interface,confirming the enhanced interfacial polarization effect.Given the diversity of MAX phases and the advantages of the fabrication method(e.g.,green,inexpensive,and easily scalable),this work provides significant guidance for the design of 1D metal-based absorbers. 展开更多
关键词 Sn/SnO_(x)heterojunctions Ti_(2)SnC max phase Microwave absorption Interfacial polarization
原文传递
Q-switched giant pulsed erbium-doped all-fiber laser with V_(2)ZnC MAX phase saturable absorber
8
作者 Kawther M Musthafa Azura Hamzah +3 位作者 Ooi Wei Ling Ahmad Haziq Aiman Rosol Norliza Mohamed Sulaiman Wadi Harun 《Optoelectronics Letters》 EI 2024年第6期321-329,共9页
MXenes,drawn from MAX phases,are special two-dimensional substances with numerous advantages in nonlinear optics,specifically in giant and ultrashort pulsed-laser applications.Ti_(3)C_(2)T_(x)and Ti_(2)CT_(x)nanosheet... MXenes,drawn from MAX phases,are special two-dimensional substances with numerous advantages in nonlinear optics,specifically in giant and ultrashort pulsed-laser applications.Ti_(3)C_(2)T_(x)and Ti_(2)CT_(x)nanosheets however rapidly deteriorate under ambient conditions,limiting their applications.This paper demonstrates how excellent modulation depth of one of the MAX phase compounds vanadium zinc carbide(V_2ZnC)makes it a brilliant saturable absorber(SA)in passively Q-switched all-fiber pulsed lasers,integrated such that a 16.73-μm V_(2)ZnC-polyvinyl alcohol(PVA)thin film acts as SA in the laser.Saturable and non-saturable absorptions were found to be 13.2%and 10.47%,while saturation optical intensity and modulation depth were 6.25 k W/cm^(2)and 12.43%,respectively,illustrating the optical nonlinearity.The superiority of MAX-PVA,fabricated in four distinct ratios,was demonstrated by the fact that it self-starts a giant pulsed laser at pump power as low as 22.5 mW and firmly accomplished 120.6 kHz repetition rate with a pulse width of 2.08μs.It is a fine SA for the use of pulsed-laser production using all-fiber laser due to fabrication simplicity and great optical,thermophysical,and mechanical qualities. 展开更多
关键词 max Q-switched giant pulsed erbium-doped all-fiber laser with V_(2)ZnC max phase saturable absorber
原文传递
Synthesis and electromagnetic wave absorption performances of a novel(Mo_(0.25)Cr_(0.25)Ti_(0.25)V_(0.25))_(3)AlC_(2)high-entropy MAX phase 被引量:5
9
作者 Linjing Qiao Jianqiang Bi +7 位作者 Guandong Liang Chen Liu Zhuangzhuang Yin Yao Yang Hongyi Wang Shaoyin Wang Mengmeng Shang Weili Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第6期112-122,共11页
Herein,a novel kind of high-entropy MAX phases,(Mo_(0.25)Cr_(0.25)Ti_(0.25)V_(0.25))_(3)AlC_(2)powders were success-fully synthesized by a newly proposed two-step solid state reaction process.The oxidation experiments... Herein,a novel kind of high-entropy MAX phases,(Mo_(0.25)Cr_(0.25)Ti_(0.25)V_(0.25))_(3)AlC_(2)powders were success-fully synthesized by a newly proposed two-step solid state reaction process.The oxidation experiments demonstrate that the oxidation products of Al_(2)Mo_(3)O_(12) and rutile TiO 2 are formed at about 600 and 800℃,respectively.Besides,the dielectric and electromagnetic(EM)wave absorption properties of(Mo_(0.25)Cr_(0.25)Ti_(0.25)V_(0.25))_(3)AlC_(2)powders and those after oxidation at different temperatures were also exam-ined.The results show that the as-synthesized(Mo_(0.25)Cr_(0.25)Ti_(0.25)V_(0.25))_(3)AlC_(2)powders possess excellent EM wave absorption performances with the minimum reflection loss(RL)of-45.80 dB(at 1.7 mm thickness)and the maximum effective absorption bandwidth(E AB)of 3.6 GHz(at 1.5 mm thickness).After oxidation at 400-800℃,due to the coupling of conductivity loss and polarization loss,(Mo_(0.25)Cr_(0.25)Ti_(0.25)V_(0.25))_(3)AlC_(2)powders can retain good EM wave absorption properties in a certain frequency range.In this paper,the effects of oxidation on EM wave absorption properties of high-entropy MAX phases were systematically investigated for the first time.This work manifests that high-entropy MAX phases are promising EM wave absorbing candidates and can maintain good EM wave absorption performances after oxidation. 展开更多
关键词 (Mo_(0.25)Cr_(0.25)Ti_(0.25)V_(0.25))_(3)AlC_(2) High-entropy max phase Two-step synthesis Oxidation Electromagnetic wave absorption
原文传递
A novel medium-entropy(TiVNb)_(2)AlC MAX phase:Fabrication,microstructure,and properties 被引量:1
10
作者 Guangqi He Yi Zhang +6 位作者 Pei Yao Xingchao Li Ke Ma Jun Zuo Meishuan Li Changsheng Liu Jingjun Xu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第6期91-99,共9页
Medium-or high-entropy materials have great potential for applications due to their diverse compo-sitions and unexpected physicochemical properties.Herein,a novel medium-entropy(TiVNb)_(2)AlC was synthesized via hot p... Medium-or high-entropy materials have great potential for applications due to their diverse compo-sitions and unexpected physicochemical properties.Herein,a novel medium-entropy(TiVNb)_(2)AlC was synthesized via hot pressing at 1400℃from three individual M_(2)AlC(M=Ti,V,Nb)MAX phases.The microstructure of(TiVNb)_(2)AlC was characterized from the microscale to the atomic scale by scanning electron microscope microscopy(SEM),scanning transmission electron microscopy(STEM),and energy dispersive spectroscopy(EDS).The results showed that Ti,V,and Nb atoms were fully solid-soluble in the M-sites of the M_(2)AlC MAX phase.Compared with three individual MAX phases,the thermal conduc-tivity of(TiVNb)_(2)AlC was reduced greatly in the temperature range of 293-1473 K,and its mechanical properties(including Young’s modulus,Vickers hardness,and bending strength)were all increased due to the solid solution strengthening and electronic mechanism. 展开更多
关键词 Medium-entropy ceramics max phases MICROSTRUCTURE Thermal properties Mechanical properties
原文传递
MAX phase forming mechanism of M-Al-C(M=Ti,V,Cr)coatings:In-situ X-ray diffraction and first-principle calculations 被引量:1
11
作者 Jianghuai Yuan Zhenyu Wang +5 位作者 Guanshui Ma Xiaojing Bai Yong Li Xiaoying Cheng Peiling Ke Aiying Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第12期140-152,共13页
The interesting hybrid properties of ceramics and metals induced by unique nano-laminated structures make the M_(n+1)AX n(MAX)phase attractive as a potential protective coating for vital structural compo-nents in hars... The interesting hybrid properties of ceramics and metals induced by unique nano-laminated structures make the M_(n+1)AX n(MAX)phase attractive as a potential protective coating for vital structural compo-nents in harsh systems.However,an extremely narrow phase-forming region makes it difficult to prepare MAX phase coatings with high purity,which is required to obtain coatings with high-temperature anti-oxidation capabilities.This work describes the dependence of the phase evolution in deposited M-Al-C(M=Ti,V,Cr)coatings as a function on temperature using in-situ X-ray diffraction analysis.Compared to V_(2)AlC and Cr_(2)AlC MAX phase coatings,the Ti_(2)AlC coating displayed a higher phase-forming tempera-ture accompanied by a lack of any intermediate phases before the appearance of the Ti_(2)AlC MAX phase.The results of the first-principle calculations correlated with the experience in which Ti_(2)AlC exhibited the largest formation energy and density of states.The effect of the phase compositions of these three MAX phase coatings on mechanical properties were also investigated using ex-situ Vickers and nano-indenter tests,demonstrating the improved mechanical properties with good stability at high temperatures.These findings provide a deeper understanding of the phase-forming mechanism of MAX phase coatings to guide the preparation of high-purity MAX phase coatings and the optimization of MAX phase coatings with expected intermediate phases such as Cr_(2)C,V_(2)C etc.,as well as their application as protective coat-ings in temperature-related harsh environments. 展开更多
关键词 max phase coating phase-formation mechanism In-situ X-ray diffraction First-principle calculations Mechanical properties
原文传递
Topotactic transition of Ti_(4)AlN_(3) MAX phase in Lewis acid molten salt 被引量:1
12
作者 Xinbo Liu Youbing Li +4 位作者 Haoming Ding Lu Chen Shiyu Du Zhifang Chai Qing Huang 《Journal of Materiomics》 SCIE CSCD 2023年第6期1032-1038,共7页
MAX phases and its derived two-dimensional MXenes have attracted considerable interest because of their rich structural chemistry and multifunctional applications.Lewis acid molten salt route provides an opportunity f... MAX phases and its derived two-dimensional MXenes have attracted considerable interest because of their rich structural chemistry and multifunctional applications.Lewis acid molten salt route provides an opportunity for structure design and performance manipulation of new MAX phases and MXenes,Although a series of new MAX phases and MXenes were successfully prepared via Lewis acid melt route in recent years,few work is explored on nitride MAX phases and MXenes.Herein,a new copper-based 413-type Ti_(4)CuN_(3)MAX phase was synthesized through isomorphous replacement reaction using Ti_(4)CuN_(3)MAX phase precursor in molten CuCl2.In addition,it was found that at high temperature Ti4N3Clx MXene will transform into two-dimensional cubic TiNa nanosheets with improved structural stability. 展开更多
关键词 max phases MXenes Two-dimensional titanium nitride Lewis acid route
原文传递
Synthesis,formation mechanism,and intrinsic physical properties of several As/P-containing MAX phases
13
作者 Hongxiang Chen Sheng Li +6 位作者 Jun Deng Zhilong Zhang Jianeng Huang Fa Chang Li Huang Shixuan Du Pinqiang Dai 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第2期23-31,共9页
321 phases are an atypical series of MAX phases,in which A=As/P,with superior elastic properties,fea-turing in the MA-triangular-prism bilayers in the crystal structure.Until now,besides Nb 3 As 2 C,the pure phases of... 321 phases are an atypical series of MAX phases,in which A=As/P,with superior elastic properties,fea-turing in the MA-triangular-prism bilayers in the crystal structure.Until now,besides Nb 3 As 2 C,the pure phases of the other 321 compounds have not been realized,hampering the study of their intrinsic prop-erties.Here,molten-salt sintering(MSS)and solid-state synthesis(SSS)were applied to synthesize As/P-containing 321 phases and 211 phases.Analyzing the phase composition of the end-product via multiple-phase Rietveld refinement,we found that MSS can effectively improve the purity of P-containing MAX phases,with the phase content up to 99%in Nb_(3)P_(2)C and 75.4(5)%in Nb 2 PC.In contrast,MSS performed poorly on As-containing MAX phases,only 8.9(4)%for Nb 3 As 2 C and 64(2)%for Nb 2 AsC,as opposed to the pure phases obtained by SSS.The experimental analyses combined with first-principles calculations reveal that the dominant formation route of Nb_(3)P_(2)C is through NbP+Nb+C→Nb_(3)P_(2)C.Moreover,we found that the benefits of MSS on P-containing MAX phases are on the facilitation of three consid-ered chemical reaction routes,especially on Nb 2 PC+NbP→Nb_(3)P_(2)C.Furthermore,the intrinsic physical properties and Fermi surface topology of two 321 phases consisting of electron,hole,and open orbits are revealed theoretically and experimentally,in which the electron carriers are dominant in electrical trans-port.The feasible synthesis methods and the formation mechanism are instructive to obtain high-purity As/P-containing MAX phases and explore new MAX phases.Meanwhile,the intrinsic physical properties will give great support for future applications on 321 phases. 展开更多
关键词 max phase Molten-salt synthesis Chemical reaction route Metallic ceramics Formation mechanism Quasi-harmonic approximation
原文传递
硫族MAX相硼化物的物相稳定性和性能预测
14
作者 张宇晨 陆知遥 +4 位作者 赫晓东 宋广平 朱春城 郑永挺 柏跃磊 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第2期225-232,I0001-I0003,共11页
Zr2SB、Hf2SB、Zr2SeB、Hf2SeB、Hf2TeB都是近期发现的硫族MAX相硼化物,与典型MAX相相比,具有明显不同的性质,因此备受人们关注。本文采用第一性原理并结合“线性优化法”、键刚度模型和准简谐近似研究了MAX相硼化物(M=Zr,Hf;A=S,Se,Te... Zr2SB、Hf2SB、Zr2SeB、Hf2SeB、Hf2TeB都是近期发现的硫族MAX相硼化物,与典型MAX相相比,具有明显不同的性质,因此备受人们关注。本文采用第一性原理并结合“线性优化法”、键刚度模型和准简谐近似研究了MAX相硼化物(M=Zr,Hf;A=S,Se,Te)的物相稳定性、力学性能和热性能。理论分析结果与目前可用的实验结果一致。经热力学和本征稳定性分析后发现,只有M2AB可以稳定存在。较短的M−A键与M−B键长使Hf系化合物的键刚度高于Zr系化合物,这也同样导致Hf系化合物的硬度高于Zr系。随着A元素由S到Se再到Te,M−B与M−A键长逐渐增加,键刚度减小导致弹性模量降低。而且,这些化合物的体积模量取决于其平均化学键刚度。更加重要的是,最弱键和最强键的刚度比(kmin/kmax)较高,显示这些MAX相硼化物不同于传统MAX相,均呈本征脆性。考虑晶格振动(声子)和电子激发的贡献后计算得到M2AB等压热容及热膨胀系数(TEC),均在300 K以下随温度升高先快速上升后上升速率逐渐降低,这与其它MAX相类似。较低的键刚度导致Zr系MAX相硼化物的平均线热膨胀系数整体上高于Hf系,而且在300~1300 K区间与大部分MAX和MAB相一致。 展开更多
关键词 第一性原理 max相硼化物 物相稳定性 力学行为 热学性能
下载PDF
MAX相陶瓷增强金属基复合材料:制备、性能与仿生设计
15
作者 刘艳艳 谢曦 +1 位作者 刘增乾 张哲峰 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第2期145-152,共8页
由于原子间存在共价键、金属键与离子键的混合键合状态,MAX相陶瓷兼具金属和陶瓷材料的性能特点,并且常与金属之间表现出良好的润湿性,有助于形成强界面结合,独特的层状原子结构使MAX相陶瓷表现出良好的断裂韧性、阻尼与自润滑性能。因... 由于原子间存在共价键、金属键与离子键的混合键合状态,MAX相陶瓷兼具金属和陶瓷材料的性能特点,并且常与金属之间表现出良好的润湿性,有助于形成强界面结合,独特的层状原子结构使MAX相陶瓷表现出良好的断裂韧性、阻尼与自润滑性能。因此,作为金属基复合材料的增强相,MAX相陶瓷具有显著优势,本文着重介绍相关研究进展。目前,MAX相陶瓷增强金属基复合材料主要通过搅拌铸造、粉末冶金和熔体浸渗等途径制备,得到的复合材料表现出优于金属基体的强度、硬度与模量,同时还具备良好的耐磨、导电、抗电弧侵蚀等性能。此外,借助真空抽滤、冰模板等工艺可实现超细片状MAX相陶瓷粉体的择优定向排列,然后利用金属熔体浸渗多孔陶瓷骨架,可获得具有类贝壳结构的MAX相陶瓷增强金属基仿生复合材料,进一步提升材料的强韧性能。MAX相陶瓷增强金属基复合材料在承载、电接触等应用领域具有显著优势和广阔前景。 展开更多
关键词 max相陶瓷 金属基复合材料 仿生设计 力学性能 熔体浸渗 专题评述
下载PDF
MAX相材料的耐铅铋腐蚀性能研究进展
16
作者 杨璇冰 张晓新 燕青芝 《材料导报》 EI CAS CSCD 北大核心 2024年第S01期397-404,共8页
铅冷快堆(LFR)以具有良好的热物理特性和化学稳定性的液态铅或铅铋合金(LBE)作为冷却剂,但是高温下LBE与结构材料长期接触带来的腐蚀问题会导致材料失效并带来安全隐患。MAX相材料因其优异的力学性能、高温耐腐蚀性能和抗辐照性能,成为... 铅冷快堆(LFR)以具有良好的热物理特性和化学稳定性的液态铅或铅铋合金(LBE)作为冷却剂,但是高温下LBE与结构材料长期接触带来的腐蚀问题会导致材料失效并带来安全隐患。MAX相材料因其优异的力学性能、高温耐腐蚀性能和抗辐照性能,成为铅冷快堆的重要结构材料之一。Ti-Si-C、Ti-Al-C和Zr-Al-C是目前被用于进行LBE腐蚀研究的三种常见MAX相材料体系。近年来,有越来越多的研究者们在不同腐蚀条件下的LBE中开展了腐蚀实验,但是对于MAX相材料的LBE腐蚀机理的分析仍不够系统和深入,也少有提高耐腐蚀性能的改性方法被提出。本文在简要介绍MAX相材料的结构、化学组成和制备方法之后,归纳综述了MAX相材料在高温液态LBE中的腐蚀行为及腐蚀机理的研究进展,提到了温度、氧浓度、时间和流速等不同因素对腐蚀层结构的影响。最后,探讨将用于提升MAX相材料在其他高温介质中耐腐蚀性能的改性方法,引入到针对耐LBE腐蚀性能研究的可能性。 展开更多
关键词 max相材料 LBE腐蚀 腐蚀机理 铅冷快堆 结构材料
下载PDF
PEMFCs金属极板表面改性MAX相涂层的制备与应用研究进展
17
作者 张家阅 马冠水 +5 位作者 王开杭 李淑钰 李昊 陈嫦颖 王振玉 汪爱英 《表面技术》 EI CAS CSCD 北大核心 2024年第15期1-20,33,共21页
金属双极板是质子交换膜燃料电池系统的关键组件,但在酸性环境中易腐蚀、导电性能退化、寿命短。Mn+1AXn(MAX)相涂层作为具备金属高导电性和陶瓷耐蚀抗氧化性的材料,在改性金属双极板涂层研究中备受关注。综述了金属双极板表面防护MAX... 金属双极板是质子交换膜燃料电池系统的关键组件,但在酸性环境中易腐蚀、导电性能退化、寿命短。Mn+1AXn(MAX)相涂层作为具备金属高导电性和陶瓷耐蚀抗氧化性的材料,在改性金属双极板涂层研究中备受关注。综述了金属双极板表面防护MAX相涂层材料与应用技术的最新研究进展。MAX相涂层的制备方法多样,包括化学气相沉积、物理气相沉积、固相反应和喷涂制备等方法。针对不同的制备方法,详细描述了MAX相涂层的制备过程,并阐述了不同制备方法对MAX相涂层材料的表面形貌和微观结构间的影响变化。特别关注了MAX相涂层在质子交换膜燃料电池中的应用,并重点分析了以Ti-Al-C、Ti-Si-C和Cr-Al-C为代表的MAX相涂层。通过电化学腐蚀测试来测量涂层在酸性环境中的腐蚀速率,以及涂层腐蚀前后的界面接触电阻测试,对涂层导电耐蚀性能的变化等进行了详细阐述。同时,对MAX相涂层的导电耐蚀机制及表/界面服役损伤机理进行了深入分析。从涂层的元素组成、晶体结构和第一性原理等方面,揭示了涂层中元素分布和相互作用对导电性能的影响。此外,还分析了晶化程度、钝化膜成分差异和原子取向等因素对涂层耐蚀性能的影响。最后,围绕目前双极板表面MAX相涂层在实际应用中存在的问题进行了探讨,并提出了未来研究的重点方向。 展开更多
关键词 质子交换膜燃料电池 金属双极板 max相涂层 导电性能 耐腐蚀性能
下载PDF
MAX相材料在液态Pb和LBE中的腐蚀行为研究
18
作者 任岩 盖欣 +2 位作者 刘喆 赵可 孙永铎 《中国资源综合利用》 2024年第10期123-125,共3页
MAX相因其优异的综合性能成为铅冷快堆的重要结构材料之一。介绍MAX相在液态Pb和铅铋合金(Lead-Bismuth Eutectic,LBE)中的腐蚀行为,分析温度、氧浓度、液态金属流速、腐蚀时间、材料成分及表面状态等因素对MAX相材料液态金属腐蚀行为... MAX相因其优异的综合性能成为铅冷快堆的重要结构材料之一。介绍MAX相在液态Pb和铅铋合金(Lead-Bismuth Eutectic,LBE)中的腐蚀行为,分析温度、氧浓度、液态金属流速、腐蚀时间、材料成分及表面状态等因素对MAX相材料液态金属腐蚀行为的影响,并指出MAX相材料液态金属腐蚀研究中存在的问题及潜在的研究方向。 展开更多
关键词 max 铅铋合金(LBE) 氧化腐蚀 溶解腐蚀
下载PDF
耐事故燃料锆合金包壳MAX相材料Cr_(2)AlC涂层的研究进展
19
作者 秦梓铭 季晨龙 尹泓卜 《核安全》 2024年第1期88-94,共7页
MAX相材料是一种三元层状结构类金属陶瓷材料的碳/氮化物,兼具金属和陶瓷的优良性能,MAX相材料Cr_(2)AlC涂层材料因其优异的抗氧化性、耐腐蚀性和耐辐照性而具有应用于耐事故燃料锆合金包壳的潜力,本文综述了该领域MAX相材料Cr_(2)AlC... MAX相材料是一种三元层状结构类金属陶瓷材料的碳/氮化物,兼具金属和陶瓷的优良性能,MAX相材料Cr_(2)AlC涂层材料因其优异的抗氧化性、耐腐蚀性和耐辐照性而具有应用于耐事故燃料锆合金包壳的潜力,本文综述了该领域MAX相材料Cr_(2)AlC涂层材料的研究进展,总结了Cr_(2)AlC涂层材料的氧化行为、腐蚀行为、失效机制和改进方向的进展情况。调研表明,对涂层进行表面改性,如引入中间层和在其表面添加金属层等,可增强涂层的抗氧化和防腐蚀性能。本文通过对现有文献的调研,论述Cr_(2)AlC涂层的优点和弊端,为进一步在航天、化工、核工业等领域的工程应用提供参考。 展开更多
关键词 max相材料 Cr_(2)AlC 耐事故燃料 综述
下载PDF
Preparation of Ti_2AlC MAX Phase Coating by DC Magnetron Sputtering Deposition and Vacuum Heat Treatment 被引量:11
20
作者 Zongjian Feng Peiling Ke Aiying Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第12期1193-1197,共5页
Due to the excellent corrosion resistance and high irradiation damage resistance,Ti 2AlC MAX phase is considered as a candidate for applications as corrosion resistant and irradiation resistant protective coating.MAX ... Due to the excellent corrosion resistance and high irradiation damage resistance,Ti 2AlC MAX phase is considered as a candidate for applications as corrosion resistant and irradiation resistant protective coating.MAX phase coatings can be fabricated through firstly depositing a coating containing the three elements M,A,and X close to stoichiometry of the MAX phases using physical vapor deposition,followed by heat treatment in vacuum.In this work,Ti-Al-C coating was prepared on austenitic stainless steels by reactive DC magnetron sputtering with a compound Ti (50)Al (50) target,and CH4 used as the reactive gas.It was found that the as-deposited coating is mainly composed of Ti 3AlC antiperovskite phase with supersaturated solid solution of Al.Additionally,the ratio of Ti/Al remained the same as that of the target composition.Nevertheless,a thicker thermally grown Ti 2AlC MAX phase coating was obtained after being annealed at 800℃ in vacuum for 1 h.Meanwhile,the ratio of Ti/Al became close to stoichiometry of Ti 2AlC MAX phases.It can be understood that owing to the higher activity of Al,it diffused quickly into the substrate during annealing,and then more stable Ti 2AlC MAX phases transformed from the Ti 3AlC antiperovskite phase. 展开更多
关键词 TI2ALC max phase COATING Magnetron sputtering Microstructure
原文传递
上一页 1 2 10 下一页 到第
使用帮助 返回顶部