期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Early Detection Glaucoma and Stargardt’s Disease Using Deep Learning Techniques
1
作者 Somasundaram Devaraj Senthil Kumar Arunachalam 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期1283-1299,共17页
Retinal fundus images are used to discover many diseases.Several Machine learning algorithms are designed to identify the Glaucoma disease.But the accuracy and time consumption performance were not improved.To address... Retinal fundus images are used to discover many diseases.Several Machine learning algorithms are designed to identify the Glaucoma disease.But the accuracy and time consumption performance were not improved.To address this problem Max Pool Convolution Neural Kuan Filtered Tobit Regres-sive Segmentation based Radial Basis Image Classifier(MPCNKFTRS-RBIC)Model is used for detecting the Glaucoma and Stargardt’s disease by early period using higher accuracy and minimal time.In MPCNKFTRS-RBIC Model,the ret-inal fundus image is considered as an input which is preprocessed in hidden layer 1 using weighted adaptive Kuanfilter.Then,preprocessed retinal fundus is given for hidden layer 2 for extracting the features like color,intensity,texture with higher accuracy.After extracting these features,the Tobit Regressive Segmenta-tion process is performed by hidden layer 3 for partitioning preprocessed image within more segments by analyzing the pixel with the extracted features of the fundus image.Then,the segmented image was given to output layer.The radial basis function analyzes the testing image region of a particular class as well as training image region with higher accuracy and minimum time consumption.Simulation is performed with retinal fundus image dataset with various perfor-mance metrics namely peak signal-to-noise ratio,accuracy and time,error rate concerning several retina fundus image and image size. 展开更多
关键词 Glaucoma detection max pool convolution neural network kuanfilter radial basis function
下载PDF
融合多层次特征的中文语义角色标注 被引量:5
2
作者 王一成 万福成 马宁 《智能系统学报》 CSCD 北大核心 2020年第1期107-113,共7页
随着人工智能和中文信息处理技术的迅猛发展,自然语言处理相关研究已逐步深入到语义理解层次上,而中文语义角色标注则是语义理解领域的核心技术。在统计机器学习仍占主流的中文信息处理领域,传统的标注方法对句子的句法及语义的解析程... 随着人工智能和中文信息处理技术的迅猛发展,自然语言处理相关研究已逐步深入到语义理解层次上,而中文语义角色标注则是语义理解领域的核心技术。在统计机器学习仍占主流的中文信息处理领域,传统的标注方法对句子的句法及语义的解析程度依赖较大,因而标注准确率受限较大,已无法满足当前需求。针对上述问题,对基于Bi-LSTM的中文语义角色标注基础模型进行了改进研究,在模型后处理阶段结合了Max pooling技术,训练时融入了词法和句式等多层次的语言学特征,以实现对原有标注模型的深入改进。通过多组实验论证,结合语言学辅助分析,提出针对性的改进方法从而使模型标注准确率得到了显著提升,证明了结合Max pooling技术的Bi-LSTM语义角色标注模型中融入相关语言学特征能够改进模型标注效果。 展开更多
关键词 自然语言处理 语义角色标注 深度学习 Bi-LSTM 语言学特征 后处理层 max pooling
下载PDF
COVID-19 Detection via a 6-Layer Deep Convolutional Neural Network 被引量:3
3
作者 Shouming Hou Ji Han 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第2期855-869,共15页
Many people around the world have lost their lives due to COVID-19.The symptoms of most COVID-19 patients are fever,tiredness and dry cough,and the disease can easily spread to those around them.If the infected people... Many people around the world have lost their lives due to COVID-19.The symptoms of most COVID-19 patients are fever,tiredness and dry cough,and the disease can easily spread to those around them.If the infected people can be detected early,this will help local authorities control the speed of the virus,and the infected can also be treated in time.We proposed a six-layer convolutional neural network combined with max pooling,batch normalization and Adam algorithm to improve the detection effect of COVID-19 patients.In the 10-fold cross-validation methods,our method is superior to several state-of-the-art methods.In addition,we use Grad-CAM technology to realize heat map visualization to observe the process of model training and detection. 展开更多
关键词 COVID-19 deep learning convolutional neural network max pooling batch normalization ADAM Grad-CAM
下载PDF
An Enhanced Deep Learning Method for Skin Cancer Detection and Classification
4
作者 Mohamed W.Abo El-Soud Tarek Gaber +1 位作者 Mohamed Tahoun Abdullah Alourani 《Computers, Materials & Continua》 SCIE EI 2022年第10期1109-1123,共15页
The prevalence of melanoma skin cancer has increased in recent decades.The greatest risk from melanoma is its ability to broadly spread throughout the body by means of lymphatic vessels and veins.Thus,the early diagno... The prevalence of melanoma skin cancer has increased in recent decades.The greatest risk from melanoma is its ability to broadly spread throughout the body by means of lymphatic vessels and veins.Thus,the early diagnosis of melanoma is a key factor in improving the prognosis of the disease.Deep learning makes it possible to design and develop intelligent systems that can be used in detecting and classifying skin lesions from visible-light images.Such systems can provide early and accurate diagnoses of melanoma and other types of skin diseases.This paper proposes a new method which can be used for both skin lesion segmentation and classification problems.This solution makes use of Convolutional neural networks(CNN)with the architecture two-dimensional(Conv2D)using three phases:feature extraction,classification and detection.The proposed method is mainly designed for skin cancer detection and diagnosis.Using the public dataset International Skin Imaging Collaboration(ISIC),the impact of the proposed segmentation method on the performance of the classification accuracy was investigated.The obtained results showed that the proposed skin cancer detection and classification method had a good performance with an accuracy of 94%,sensitivity of 92%and specificity of 96%.Also comparing with the related work using the same dataset,i.e.,ISIC,showed a better performance of the proposed method. 展开更多
关键词 Convolution neural networks activation function separable convolution 2D batch normalization max pooling classification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部