期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于Max-stable模型的淮河流域气候极值空间建模分析 被引量:1
1
作者 王怀军 赵卓怡 +3 位作者 曹蕾 潘莹萍 冯如 杨雅雪 《水利规划与设计》 2020年第6期51-58,153,共9页
气象数据时空建模过程中需要充分考虑数据的非正态性和站点之间的空间相关性对气候极值演变规律的影响。文章基于淮河流域极端气候事件的空间相关性,以广义极值分布(GEV)为边际分布,海拔、经度、纬度、国内生产总值(GDP)和气候指标(东... 气象数据时空建模过程中需要充分考虑数据的非正态性和站点之间的空间相关性对气候极值演变规律的影响。文章基于淮河流域极端气候事件的空间相关性,以广义极值分布(GEV)为边际分布,海拔、经度、纬度、国内生产总值(GDP)和气候指标(东亚夏季风指数(EASM))为协变量构建Max-stable模型,分析年最高气温(TXx)和1日最大降水量(RX1day)的空间分布特征。结果表明:所建立的Max-stable模型能够很好地模拟TXx和RX1day的空间变化;经度、纬度和海拔为协变量(TXx包括GDP)可以提高气候极值的空间模拟精度;2年、10年、50年和100年重现期的RX1day重现水平从流域西北向东南递减,TXx呈经向分布,由流域西部向东部逐步增大。 展开更多
关键词 极端气候事件 空间建模 max-stable模型 淮河流域
下载PDF
基于Max-Stable模型的海河流域气候极值变化特征 被引量:5
2
作者 李帅 王怀军 潘莹萍 《南水北调与水利科技(中英文)》 CAS 北大核心 2020年第2期31-43,共13页
为了解在全球变暖的背景下海河流域对气候极端事件的响应,基于海河流域1961-2016年气温与降水数据,使用RClimDex模型、MK趋势检验、Max-Stable模型对海河流域气候极值进行建模分析,研究海河流域气温极值、降水极值不同重现期的时空分布... 为了解在全球变暖的背景下海河流域对气候极端事件的响应,基于海河流域1961-2016年气温与降水数据,使用RClimDex模型、MK趋势检验、Max-Stable模型对海河流域气候极值进行建模分析,研究海河流域气温极值、降水极值不同重现期的时空分布、变化特征。结果表明:海河流域温度极值TXx在空间上表现出从北向南递减趋势,值域为30~40℃,其中36~40℃占大部分地区。TXx在南方呈降低趋势,北方呈上升趋势。降水极值RX1day空间上表现出从东南向西北方向递减的趋势,值域为50~100mm,其中60~90mm占据绝大部分区域。RX1day整体呈下降趋势,其中渤海地区RX1day下降趋势最大。海河流域GEV模型拟合结果表明,海河流域气温极值主要受纬度、海拔影响,随纬度、海拔增加而降低,其变化波动为北方强于南方。降水极值RX1day受海拔和经度影响较大,主要表现为随海拔增大而下降的空间分布,其次表现为随经度变化由西向东递增的空间分布,其变化波动随海拔升高而降低。通过Q-Q百分位图、非参数极值系数θ、GEV与Max-Stable参数和重现期强度散点图判定系数R2,确定Max-Stable模型可以很好地模拟海河流域气候极值,达到GEV模型同等效果。气候极值TXx与RX1day主要受到纬度、经度和海拔的影响,但距海岸距离的加入仅可以优化TXx模型的建立。2年、10年、50年、100年一遇气温极值TXx的空间分布均表现为自东北向西南递增的分布模式,高值区均分布于西南大部一带,最高温度达40~44℃。2年、10年、50年、100年一遇降水极值TX1day的空间分布主要受纬度影响,其次受经度和海拔的影响,均表现为从西南偏中向北方递减,高值区分布在西南偏中一带,最大降水量达80~200mm。 展开更多
关键词 海河流域 空间建模 max-stable PROCESSES 气候极值 广义极值分布
下载PDF
Multivariate extremes and max-stable processes:discussion of the paper by Zhengjun Zhang 被引量:1
3
作者 R.L.Smith 《Statistical Theory and Related Fields》 2021年第1期41-44,共4页
This discussion reviews the paper by Zhengjun Zhang in the context of broader research on multivariate extreme value theory and max-stable processes.
关键词 Brown-Resnick processes extreme value theory M4 processes max-stable processes maximum likelihood multivariate extremes
原文传递
New extreme value theory for maxima of maxima
4
作者 Wenzhi Cao Zhengjun Zhang 《Statistical Theory and Related Fields》 2021年第3期232-252,共21页
Although advanced statistical models have been proposed to fit complex data better,the advances of science and technology have generated more complex data,e.g.,Big Data,in which existing probability theory and statist... Although advanced statistical models have been proposed to fit complex data better,the advances of science and technology have generated more complex data,e.g.,Big Data,in which existing probability theory and statistical models find their limitations.This work establishes probability foundations for studying extreme values of data generated from a mixture process with the mixture pattern depending on the sample length and data generating sources.In particular,we show that the limit distribution,termed as the accelerated max-stable distribution,of the maxima of maxima of sequences of random variables with the above mixture pattern is a product of three types of extreme value distributions.As a result,our theoretical results are more general than the classical extreme value theory and can be applicable to research problems related to Big Data.Examples are provided to give intuitions of the new distribution family.We also establish mixing conditions for a sequence of random variables to have the limit distributions.The results for the associated independent sequence and the maxima over arbitrary intervals are also developed.We use simulations to demonstrate the advantages of our newly established maxima of maxima extreme value theory. 展开更多
关键词 maximum domain of attraction max-stable distribution competing-maximum domain of attractions accelerated max-stable distribution accelerated extreme value distribution
原文传递
An extended sparsemax-linearmoving model with application to high-frequency financial data 被引量:3
5
作者 Timothy Idowu Zhengjun Zhang 《Statistical Theory and Related Fields》 2017年第1期92-111,共20页
There continues to be unfading interest in developing parametric max-stable processes for modelling tail dependencies and clustered extremes in time series data.However,this comes with some difficulties mainly due to ... There continues to be unfading interest in developing parametric max-stable processes for modelling tail dependencies and clustered extremes in time series data.However,this comes with some difficulties mainly due to the lack of models that fit data directly without transforming the data and the barriers in estimating a significant number of parameters in the existing models.In thiswork,we study the use of the sparsemaxima ofmovingmaxima(M3)process.After introducing random effects and hidden Fréchet type shocks into the process,we get an extended maxlinear model.The extended model then enables us to model cases of tail dependence or independence depending on parameter values.We present some unique properties including mirroring the dependence structure in real data,dealing with the undesirable signature patterns found in most parametricmax-stable processes,and being directly applicable to real data.ABayesian inference approach is developed for the proposed model,and it is applied to simulated and real data. 展开更多
关键词 Extreme value theory max-stable processes time series Bayesian inference max-linear models high-frequency financial data
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部