Rapid maxillary expansion(RME),as a common treatment for craniomaxillofacial deformity,faces the challenge of high relapse rates and unsatisfactory therapeutic effects.In this study,a standardized Sprague-Dawley(SD)ra...Rapid maxillary expansion(RME),as a common treatment for craniomaxillofacial deformity,faces the challenge of high relapse rates and unsatisfactory therapeutic effects.In this study,a standardized Sprague-Dawley(SD)rat RME model was first established with a modified expander as well as retainer design and optimized anterior maxillary expanding force of 100 g which exerted the most synchronized mobility of mid-palatal suture and incisors.Via the standardized model,the high relapse rate was proven to be attributed to insufficient osteogenesis in expanded suture,requiring long-term retainer wearing in clinical situations.To reduce the relapse rate,mesoporous bioactive glass/fibrin glue(MBG/FG)composite hydrogels were developed for an in situ minimal invasive injection that enhance osteogenesis in the expanded palate.The component of 1 wt%MBG was adopted for enhanced mechanical strength,matched degradation rate and ion dissolution,excellent in vitro biocompatibility and osteoinductivity.Effects of 1%MBG/FG composite hydrogel on osteogenesis in expanded mid-palatal sutures with/without retention were evaluated in the standardized model.The results demonstrated that injection of 1%MBG/FG composite hydrogel significantly promoted bone formation within the expanded mid-palatal suture,inhibited osteoclastogenesis and benefited the balance of bone remodeling towards osteogenesis.Combination of retainer and injectable biomaterial was demonstrated as a promising treatment to reduce relapse rate and enhance osteogenesis after RME.The model establishment and the composite hydrogel development in this article might provide new insight to other craniomaxillofacial deformity treatment and design of bone-repairing biomaterials with higher regenerative efficiency.展开更多
基金the National Natural Science Foundation of China(No.81970973,No.81771036,No.82071097,No.82071096)China Postdoctoral Science Foundation(2020T130422)Shanghai Sailing Program(19YF1425500,19YF1426500).
文摘Rapid maxillary expansion(RME),as a common treatment for craniomaxillofacial deformity,faces the challenge of high relapse rates and unsatisfactory therapeutic effects.In this study,a standardized Sprague-Dawley(SD)rat RME model was first established with a modified expander as well as retainer design and optimized anterior maxillary expanding force of 100 g which exerted the most synchronized mobility of mid-palatal suture and incisors.Via the standardized model,the high relapse rate was proven to be attributed to insufficient osteogenesis in expanded suture,requiring long-term retainer wearing in clinical situations.To reduce the relapse rate,mesoporous bioactive glass/fibrin glue(MBG/FG)composite hydrogels were developed for an in situ minimal invasive injection that enhance osteogenesis in the expanded palate.The component of 1 wt%MBG was adopted for enhanced mechanical strength,matched degradation rate and ion dissolution,excellent in vitro biocompatibility and osteoinductivity.Effects of 1%MBG/FG composite hydrogel on osteogenesis in expanded mid-palatal sutures with/without retention were evaluated in the standardized model.The results demonstrated that injection of 1%MBG/FG composite hydrogel significantly promoted bone formation within the expanded mid-palatal suture,inhibited osteoclastogenesis and benefited the balance of bone remodeling towards osteogenesis.Combination of retainer and injectable biomaterial was demonstrated as a promising treatment to reduce relapse rate and enhance osteogenesis after RME.The model establishment and the composite hydrogel development in this article might provide new insight to other craniomaxillofacial deformity treatment and design of bone-repairing biomaterials with higher regenerative efficiency.