A new family of GB-majorized mappings from a topological space into a finite continuous topological spaces (in short, FC-space) involving a better admissible set-valued mapping is introduced. Some existence theorems...A new family of GB-majorized mappings from a topological space into a finite continuous topological spaces (in short, FC-space) involving a better admissible set-valued mapping is introduced. Some existence theorems of maximal elements for the family of GB-majorized mappings are proved under noncompact setting of product FCspaces. Some applications to fixed point and system of minimax inequalities are given in product FC-spaces. These theorems improve, unify and generalize many important results in recent literature.展开更多
A new family of set_valued mappings from a topological space into generalized convex spaces was introduced and studied. By using the continuous partition of unity theorem and Brouwer fixed point theorem, several exist...A new family of set_valued mappings from a topological space into generalized convex spaces was introduced and studied. By using the continuous partition of unity theorem and Brouwer fixed point theorem, several existence theorems of maximal elements for the family of set_valued mappings were proved under noncompact setting of product generalized convex spaces. These theorems improve, unify and generalize many important results in recent literature.展开更多
A new family of set_valued mappings from a topological space into generalized convex spaces was introduced and studied. By using the continuous partition of unity theorem and Brouwer fixed point theorem, several exist...A new family of set_valued mappings from a topological space into generalized convex spaces was introduced and studied. By using the continuous partition of unity theorem and Brouwer fixed point theorem, several existence theorems of maximal elements for the family of set_valued mappings were proved under noncompact setting of product generalized convex spaces. These theorems improve, unify and generalize many important results in recent literature.展开更多
First, the notions of the measure of noncompactness and condensing setvalued mappings are introduced in locally FC-uniform spaces without convexity structure. A new existence theorem of maximal elements of a family of...First, the notions of the measure of noncompactness and condensing setvalued mappings are introduced in locally FC-uniform spaces without convexity structure. A new existence theorem of maximal elements of a family of set-valued mappings involving condensing mappings is proved in locally FC-uniform spaces. As applications, some new equilibrium existence theorems of generalized game involving condensing mappings are established in locally FC-uniform spaces. These results improve and generalize some known results in literature to locally FC-uniform spaces. Some further applications of our results to the systems of generalized vector quasi-equilibrium problems will be given in a follow-up paper.展开更多
An existence theorem of maximal elements for a new type of preference correspondences which are Q(0)-majorized is given. Then some existence theorems of equilibrium for abstract economy and qualitative game in which t...An existence theorem of maximal elements for a new type of preference correspondences which are Q(0)-majorized is given. Then some existence theorems of equilibrium for abstract economy and qualitative game in which the constraint or preference correspondences are Q(0)-majorized are obtained in locally convex topological vector spaces.展开更多
An existence theorem of maximal elements for an L*-majorized correspondence defined on a non-paracompact H-space is established. As applications of the result, an equilibrium existence theorem for a non-paracompact g...An existence theorem of maximal elements for an L*-majorized correspondence defined on a non-paracompact H-space is established. As applications of the result, an equilibrium existence theorem for a non-paracompact generalized game in H-spaces with infinitely many players and with L*-majorized correspondences is given.展开更多
Two existence theorems of maximal elements of condensing preference maps in locally convex Hausdorff spaces are proved which generalize the recent results of Mehta. One of them positively answers the open problem ment...Two existence theorems of maximal elements of condensing preference maps in locally convex Hausdorff spaces are proved which generalize the recent results of Mehta. One of them positively answers the open problem mentioned by Mehta.展开更多
By applying a maximal element theorem on product FC-space due to author, some new equilibrium existence theorems for generalized games with fuzzy constraint correspondences are proved in FC-spaces. By using these equi...By applying a maximal element theorem on product FC-space due to author, some new equilibrium existence theorems for generalized games with fuzzy constraint correspondences are proved in FC-spaces. By using these equilibrium existence theorems, some new existence theorems of solutions for the system of generalized vector quasi-equilibrium problems are established in noncompact product FC-spaces. These results improve and generalize some recent results in literature to product FC-spaces without any convexity structure.展开更多
In this paper, we study some new systems of generalized quasi-variational inclusion problems in FC-spaces without convexity structure.By applying an existence theorem of maximal elements of set-valued mappings due to ...In this paper, we study some new systems of generalized quasi-variational inclusion problems in FC-spaces without convexity structure.By applying an existence theorem of maximal elements of set-valued mappings due to the author, some new existence theorems of solutions for the systems of generalized quasi-variational inclusion problems are proved in noncompact FC-spaces. As applications, some existence results of solutions for the system of quasi-optimization problems and mathematical programs with the systems of generalized quasi-variational inclusion constraints are obtained in FC-spaces.展开更多
Some new coincidence theorems involving a new class of set-valued mappingscontaining composites of acyclic mappings defined on a contractible space are proved.As applications, some existence theorems of maximal elemen...Some new coincidence theorems involving a new class of set-valued mappingscontaining composites of acyclic mappings defined on a contractible space are proved.As applications, some existence theorems of maximal elements and solutions of abstract variational inequalities, and best approximation theorems are proved. These theorems improve and generalize a number of known results in recent literature.展开更多
Fan-Browder type fixed point theorems are obtained for non-selfmaps on non-compact generalized convex product spaces and new existence problems of(partially) maximai element and equilibrium point are discussed as ap...Fan-Browder type fixed point theorems are obtained for non-selfmaps on non-compact generalized convex product spaces and new existence problems of(partially) maximai element and equilibrium point are discussed as applications of above results.展开更多
In this article, four new classes of systems of generalized vector quasi-equilibrium problems are introduced and studied in FC-spaces without convexity structure. The notions of Ci(x)-FC-partially diagonally quasico...In this article, four new classes of systems of generalized vector quasi-equilibrium problems are introduced and studied in FC-spaces without convexity structure. The notions of Ci(x)-FC-partially diagonally quasiconvex, Ci(x)-FC-quasiconvex, and Ci(x)-FC- quasiconvex-like for set-valued mappings are also introduced in FC-spaces. By applying these notions and a maximal element theorem, the nonemptyness and compactness of solution sets for four classes of systems of generalized vector quasi-equilibrium problems are proved in noncompact FC-spaces. As applications, some new existence theorems of solutions for mathematical programs with system of generalized vector quasi-equilibrium constraints are obtained in FC-spaces. These results improve and generalize some recent known results in literature.展开更多
In this paper, we present a new fixed point theorem in L-convex spaces and apply it to obtain a maximal element theorem, a variational inequality and a saddle point theorem in L-convex spaces.
Using a fixed point theorem by Kuo, Jeng and Huang, we obtain in G-convex spaces a very general intersection theorem concerning the values of three maps. From this result we derive successively alternative theorems co...Using a fixed point theorem by Kuo, Jeng and Huang, we obtain in G-convex spaces a very general intersection theorem concerning the values of three maps. From this result we derive successively alternative theorems concerning maximal elements, analytic alternatives and minimax inequalities.展开更多
The theory of increasing and convex-along-rays(ICAR)functions defined on a convex cone in a real locally convex topological vector space X was already well developed.In this paper,we first examine abstract convexity o...The theory of increasing and convex-along-rays(ICAR)functions defined on a convex cone in a real locally convex topological vector space X was already well developed.In this paper,we first examine abstract convexity of increasing plus-convex-along-rays(IPCAR)functions defined on a real normed linear space X.We also study,for this class of functions,some concepts of abstract convexity,such as support sets and subdifferentials.Finally,as an application,we characterize the maximal elements of the support set of strictly IPCAR functions and give optimality conditions for the global minimum of the difference between two IPCAR functions.展开更多
By applying an existence theorem of maximal elements of set-valued mappings in FC-spaces proposed by the author, some new existence theorems of solutions for systems of generalized quasi-variational inclusion (disclu...By applying an existence theorem of maximal elements of set-valued mappings in FC-spaces proposed by the author, some new existence theorems of solutions for systems of generalized quasi-variational inclusion (disclusion) problems are proved in FC-spaces without convexity structures. These results improve and generalize some results in recent publications from closed convex subsets of topological vector spaces to FC-spaces under weaker conditions.展开更多
In this paper,a new GLKKM theorem in L-convex spaces is established.As applications,a new fixed point theorem and a maximal element theorem are obtained in Lconvex spaces.Finally,equilibrium existence theorems for eco...In this paper,a new GLKKM theorem in L-convex spaces is established.As applications,a new fixed point theorem and a maximal element theorem are obtained in Lconvex spaces.Finally,equilibrium existence theorems for economies and qualitative games in L-convex spaces are yielded.展开更多
In this paper, we introduce and study a class of generalized vector quasivariational-like inequality problems, which includes generalized nonlinear vector variational inequality problems, generalized vector variationa...In this paper, we introduce and study a class of generalized vector quasivariational-like inequality problems, which includes generalized nonlinear vector variational inequality problems, generalized vector variational inequality problems and generalized vector variational-like inequality problems as special cases. We use the maximal element theorem with an escaping sequence to prove the existence results of a solution for generalized vector quasi-variational-like inequalities without any monotonicity conditions in the setting of locally convex topological vector space.展开更多
Let φ be a homomorphism from a group H to a group Aut(N). Denote by Hφ× N the semidirect product of N by H with homomorphism φ. This paper proves that: Let G be a finite nonsolvable group. If G has exactly ...Let φ be a homomorphism from a group H to a group Aut(N). Denote by Hφ× N the semidirect product of N by H with homomorphism φ. This paper proves that: Let G be a finite nonsolvable group. If G has exactly 40 maximal order elements, then G is isomorphic to one of the following groups: (1) Z4φ×A5, kerφ = Z2; (2) D8φ ×A5, kerφ = Z2 ×Z2; (3) G/N = S5, N = Z(G) = Z2; (4) G/N = S5, N = Z2 ×Z2, N∩Z(G) = Z2.展开更多
In this paper, a new fixed point theorem is established in noncompact hyperconvex metric spaces. As applications, a continuous selection and its fixed point theorem, an existence theorem for maximal elements, a Ky Fan...In this paper, a new fixed point theorem is established in noncompact hyperconvex metric spaces. As applications, a continuous selection and its fixed point theorem, an existence theorem for maximal elements, a Ky Fan minimax inequality and an existence theorem for saddle points are obtained.展开更多
基金Project supported by the Natural Science Foundation of Sichuan Education Department of China (Nos.2003A081 and SZD0406)
文摘A new family of GB-majorized mappings from a topological space into a finite continuous topological spaces (in short, FC-space) involving a better admissible set-valued mapping is introduced. Some existence theorems of maximal elements for the family of GB-majorized mappings are proved under noncompact setting of product FCspaces. Some applications to fixed point and system of minimax inequalities are given in product FC-spaces. These theorems improve, unify and generalize many important results in recent literature.
文摘A new family of set_valued mappings from a topological space into generalized convex spaces was introduced and studied. By using the continuous partition of unity theorem and Brouwer fixed point theorem, several existence theorems of maximal elements for the family of set_valued mappings were proved under noncompact setting of product generalized convex spaces. These theorems improve, unify and generalize many important results in recent literature.
文摘A new family of set_valued mappings from a topological space into generalized convex spaces was introduced and studied. By using the continuous partition of unity theorem and Brouwer fixed point theorem, several existence theorems of maximal elements for the family of set_valued mappings were proved under noncompact setting of product generalized convex spaces. These theorems improve, unify and generalize many important results in recent literature.
基金the Natural Science Foundation of Sichuan Education Department of China (Nos.2003A081 and SZD0406)
文摘First, the notions of the measure of noncompactness and condensing setvalued mappings are introduced in locally FC-uniform spaces without convexity structure. A new existence theorem of maximal elements of a family of set-valued mappings involving condensing mappings is proved in locally FC-uniform spaces. As applications, some new equilibrium existence theorems of generalized game involving condensing mappings are established in locally FC-uniform spaces. These results improve and generalize some known results in literature to locally FC-uniform spaces. Some further applications of our results to the systems of generalized vector quasi-equilibrium problems will be given in a follow-up paper.
文摘An existence theorem of maximal elements for a new type of preference correspondences which are Q(0)-majorized is given. Then some existence theorems of equilibrium for abstract economy and qualitative game in which the constraint or preference correspondences are Q(0)-majorized are obtained in locally convex topological vector spaces.
基金Supported by the NNSF of China(10571081)the Natural Science Foundation of Beijing Education Department(KM200710772007).
文摘An existence theorem of maximal elements for an L*-majorized correspondence defined on a non-paracompact H-space is established. As applications of the result, an equilibrium existence theorem for a non-paracompact generalized game in H-spaces with infinitely many players and with L*-majorized correspondences is given.
基金Project Supported by the National Natural Science Foundation of China
文摘Two existence theorems of maximal elements of condensing preference maps in locally convex Hausdorff spaces are proved which generalize the recent results of Mehta. One of them positively answers the open problem mentioned by Mehta.
基金This project was supported by the NSF of Sichuan Education of China(2003A081)and SZD0406
文摘By applying a maximal element theorem on product FC-space due to author, some new equilibrium existence theorems for generalized games with fuzzy constraint correspondences are proved in FC-spaces. By using these equilibrium existence theorems, some new existence theorems of solutions for the system of generalized vector quasi-equilibrium problems are established in noncompact product FC-spaces. These results improve and generalize some recent results in literature to product FC-spaces without any convexity structure.
基金supported by the Scientific Research Fun of Sichuan Normal University(09ZDL04)the Sichuan Province Leading Academic Discipline Project(SZD0406)
文摘In this paper, we study some new systems of generalized quasi-variational inclusion problems in FC-spaces without convexity structure.By applying an existence theorem of maximal elements of set-valued mappings due to the author, some new existence theorems of solutions for the systems of generalized quasi-variational inclusion problems are proved in noncompact FC-spaces. As applications, some existence results of solutions for the system of quasi-optimization problems and mathematical programs with the systems of generalized quasi-variational inclusion constraints are obtained in FC-spaces.
文摘Some new coincidence theorems involving a new class of set-valued mappingscontaining composites of acyclic mappings defined on a contractible space are proved.As applications, some existence theorems of maximal elements and solutions of abstract variational inequalities, and best approximation theorems are proved. These theorems improve and generalize a number of known results in recent literature.
基金Supported by the National Natural Science Foundation of China(10361005)
文摘Fan-Browder type fixed point theorems are obtained for non-selfmaps on non-compact generalized convex product spaces and new existence problems of(partially) maximai element and equilibrium point are discussed as applications of above results.
基金supported by the Scientific Research Fun of Sichuan Normal University (09ZDL04)the Sichuan Province Leading Academic Discipline Project (SZD0406)
文摘In this article, four new classes of systems of generalized vector quasi-equilibrium problems are introduced and studied in FC-spaces without convexity structure. The notions of Ci(x)-FC-partially diagonally quasiconvex, Ci(x)-FC-quasiconvex, and Ci(x)-FC- quasiconvex-like for set-valued mappings are also introduced in FC-spaces. By applying these notions and a maximal element theorem, the nonemptyness and compactness of solution sets for four classes of systems of generalized vector quasi-equilibrium problems are proved in noncompact FC-spaces. As applications, some new existence theorems of solutions for mathematical programs with system of generalized vector quasi-equilibrium constraints are obtained in FC-spaces. These results improve and generalize some recent known results in literature.
基金Foundation item: Supported by the Natural Science Foundation of Guizhou Province(J2011]2093)
文摘In this paper, we present a new fixed point theorem in L-convex spaces and apply it to obtain a maximal element theorem, a variational inequality and a saddle point theorem in L-convex spaces.
文摘Using a fixed point theorem by Kuo, Jeng and Huang, we obtain in G-convex spaces a very general intersection theorem concerning the values of three maps. From this result we derive successively alternative theorems concerning maximal elements, analytic alternatives and minimax inequalities.
基金the Mahani Mathematical Research Center,Iran,grant no:97/3267。
文摘The theory of increasing and convex-along-rays(ICAR)functions defined on a convex cone in a real locally convex topological vector space X was already well developed.In this paper,we first examine abstract convexity of increasing plus-convex-along-rays(IPCAR)functions defined on a real normed linear space X.We also study,for this class of functions,some concepts of abstract convexity,such as support sets and subdifferentials.Finally,as an application,we characterize the maximal elements of the support set of strictly IPCAR functions and give optimality conditions for the global minimum of the difference between two IPCAR functions.
基金Project supported by the Scientific Research Fund of Sichuan Normal University (No. 09ZDL04)the Sichuan Province Leading Academic Discipline Project (No. SZD0406)
文摘By applying an existence theorem of maximal elements of set-valued mappings in FC-spaces proposed by the author, some new existence theorems of solutions for systems of generalized quasi-variational inclusion (disclusion) problems are proved in FC-spaces without convexity structures. These results improve and generalize some results in recent publications from closed convex subsets of topological vector spaces to FC-spaces under weaker conditions.
基金Supported by the Natural Science Foundation of Guizhou Province([2011]2093)Supported by the Natural Scientific Research Foundation of Guizhou Provincial Education Department of China(2008072)
文摘In this paper,a new GLKKM theorem in L-convex spaces is established.As applications,a new fixed point theorem and a maximal element theorem are obtained in Lconvex spaces.Finally,equilibrium existence theorems for economies and qualitative games in L-convex spaces are yielded.
基金The NSF(60804065) of Chinathe Foundation(11A029,11A028) of China West Normal University+2 种基金the Fundamental Research Funds(13D016) of China West Normal Universitythe Key Project(211163) of Chinese Ministry of EducationSichuan Youth Science and Technology Foundation(2012JQ0032)
文摘In this paper, we introduce and study a class of generalized vector quasivariational-like inequality problems, which includes generalized nonlinear vector variational inequality problems, generalized vector variational inequality problems and generalized vector variational-like inequality problems as special cases. We use the maximal element theorem with an escaping sequence to prove the existence results of a solution for generalized vector quasi-variational-like inequalities without any monotonicity conditions in the setting of locally convex topological vector space.
基金the Natural of Chongqing Three Gorge University(No.2007-sxxyyb-01)
文摘Let φ be a homomorphism from a group H to a group Aut(N). Denote by Hφ× N the semidirect product of N by H with homomorphism φ. This paper proves that: Let G be a finite nonsolvable group. If G has exactly 40 maximal order elements, then G is isomorphic to one of the following groups: (1) Z4φ×A5, kerφ = Z2; (2) D8φ ×A5, kerφ = Z2 ×Z2; (3) G/N = S5, N = Z(G) = Z2; (4) G/N = S5, N = Z2 ×Z2, N∩Z(G) = Z2.
基金the Science Research Foundation of Bijie University(No.20062002)
文摘In this paper, a new fixed point theorem is established in noncompact hyperconvex metric spaces. As applications, a continuous selection and its fixed point theorem, an existence theorem for maximal elements, a Ky Fan minimax inequality and an existence theorem for saddle points are obtained.