Given a maximal subgroup M of a group G, a θ*-completion C of M is called an s*-completion if either C = G or there exists a subgroup D of G which is not a θ*-completion of M such that D contains C as a maximal subg...Given a maximal subgroup M of a group G, a θ*-completion C of M is called an s*-completion if either C = G or there exists a subgroup D of G which is not a θ*-completion of M such that D contains C as a maximal subgroup. In this paper, we obtain several results on s*-completions which imply G to be solvable or supersolvable.展开更多
Let G be a finite group. A subgroup H of G is called an H-subgroup in G if NG(H)∩ H^g ≤ H for all g C G. A subgroup H of G is called a weakly H-subgroup in G if there exists a normal subgroup K of G such that G = ...Let G be a finite group. A subgroup H of G is called an H-subgroup in G if NG(H)∩ H^g ≤ H for all g C G. A subgroup H of G is called a weakly H-subgroup in G if there exists a normal subgroup K of G such that G = HK and H N K is an H-subgroup in G. In this paper, we investigate the structure of the finite group G under the assumption that every subgroup of G of prime order or of order 4 is a weakly H-subgroup in G. Our results improve and generalize several recent results in the literature.展开更多
A subgroup H of G is called s-conditionally permutable in G if for every Sylow subgroup T of G, there exists an element x ∈ G such that HTK = T^KH. In this paper, we investigate further the influence of s-conditional...A subgroup H of G is called s-conditionally permutable in G if for every Sylow subgroup T of G, there exists an element x ∈ G such that HTK = T^KH. In this paper, we investigate further the influence of s-conditionally permutability of some 2-maximal subgroups of the Sylow subgroup of G, on the structure of finite groups. New criteria for a group G being p-nilpotent are obtained.展开更多
Let σ={σi | i ∈ I} be some partition of the set of all primes P. A set H of subgroups of G is said to be a complete Hall σ-set of G if every member ≠ 1 of H is a Hall σi-subgroup of G, for some i ∈ I, and H con...Let σ={σi | i ∈ I} be some partition of the set of all primes P. A set H of subgroups of G is said to be a complete Hall σ-set of G if every member ≠ 1 of H is a Hall σi-subgroup of G, for some i ∈ I, and H contains exactly one Hall σi-subgroup of G for every σi ∈σ(G). A subgroup H of G is said to be:σ-permutable or σ-quasinormal in G if G possesses a complete Hall σ-set H such that HAx= AxH for all A ∈ H and x ∈ G:σ-subnormal in G if there is a subgroup chain A = A0≤A1≤···≤ At = G such that either Ai-1■Ai or Ai/(Ai-1)Ai is a finite σi-group for some σi ∈σ for all i = 1,..., t.If Mn < Mn-1 <···< M1 < M0 = G, where Mi is a maximal subgroup of Mi-1, i = 1, 2,..., n, then Mn is said to be an n-maximal subgroup of G. If each n-maximal subgroup of G is σ-subnormal(σ-quasinormal,respectively) in G but, in the case n > 1, some(n-1)-maximal subgroup is not σ-subnormal(not σ-quasinormal,respectively) in G, we write mσ(G)= n(mσq(G)= n, respectively).In this paper, we show that the parameters mσ(G) and mσq(G) make possible to bound the σ-nilpotent length lσ(G)(see below the definitions of the terms employed), the rank r(G) and the number |π(G)| of all distinct primes dividing the order |G| of a finite soluble group G. We also give the conditions under which a finite group is σ-soluble or σ-nilpotent, and describe the structure of a finite soluble group G in the case when mσ(G)=|π(G)|. Some known results are generalized.展开更多
We study the problem concerning the influence of indices of maximal subgroups of a simple group on the structure of a group. We obtain a characterization property of all finite simple groups.
A subgroup A of a p-group G is said to be soft in G if CG(A) = A and |NG(A)/A| = p. In this paper we determined finite p-groups all of whose maximal abelian subgroups are soft; see Theorem A and Proposition 2.4.
A subgroup of index p^k of a finite p-group G is called a k-maximal subgroup of G.Denote by d(G) the number of elements in a minimal generator-system of G and by δ_k(G) the number of k-maximal subgroups which do not ...A subgroup of index p^k of a finite p-group G is called a k-maximal subgroup of G.Denote by d(G) the number of elements in a minimal generator-system of G and by δ_k(G) the number of k-maximal subgroups which do not contain the Frattini subgroup of G.In this paper,the authors classify the finite p-groups with δ_(d(G))(G) ≤ p^2 and δ_(d(G)-1)(G) = 0,respectively.展开更多
In this paper, We show that the simple K\-3-groups can be characterized by the orders of their maximal abelian subgroups. That is, we have Theorem Let G be a finite group and M a simple K \-3-group. Then ...In this paper, We show that the simple K\-3-groups can be characterized by the orders of their maximal abelian subgroups. That is, we have Theorem Let G be a finite group and M a simple K \-3-group. Then G is isomorphic to M if and only if the set of the orders of the maximal abelian subgoups of G is the same as that of M .展开更多
By the property of the solvable group and the extending theorem of group, the authors acquired the structure of one type of Non-Abelian group. And we proved that when order is 10p n (p#2,5) and the sylowp-subgroup is ...By the property of the solvable group and the extending theorem of group, the authors acquired the structure of one type of Non-Abelian group. And we proved that when order is 10p n (p#2,5) and the sylowp-subgroup is cyclic, the group has twenty types. Whenp#3, it has 12 types and whenp=3, it has 8 types.展开更多
For a positive integer n,we denote byπ(n)the set of all prime divisors of n.For a finite group G,the setπ(G):=π(|G|)is called the prime spectrum of G.Let M<G mean that M is a maximal subgroup of G.We put K(G)=ma...For a positive integer n,we denote byπ(n)the set of all prime divisors of n.For a finite group G,the setπ(G):=π(|G|)is called the prime spectrum of G.Let M<G mean that M is a maximal subgroup of G.We put K(G)=max{|π(G)\π(M)|:M<G}and k(G)=min{|π(G)\π(M)|:M<G}.In this notice,using well-known number-theoretical results,we present a number of examples to show that both K(G)and k(G)are unbounded in general.This implies that the problem"Are k(G)and K(G)bounded by some constant k?",raised by Monakhov and Skiba in 2016,is solved in the negative.展开更多
A subgroup H of a group G is said to have the sub-cover-avoidance property in G ffthereis a chief series 1 = G0 ≤ G1 ≤…≤ Gn - G, such that Gi-1(H ∩ Gi) G for every i = 1,2,... ,l. In this paper, we give some...A subgroup H of a group G is said to have the sub-cover-avoidance property in G ffthereis a chief series 1 = G0 ≤ G1 ≤…≤ Gn - G, such that Gi-1(H ∩ Gi) G for every i = 1,2,... ,l. In this paper, we give some characteristic conditions for a group to be solvable under the assumptions that some subgroups of a group satisfy the sub-cover-avoidance property.展开更多
Let G be a classical group over an arbitrary field F,acting on an n-dimensional vector space V=V(n,F)over a field F.In this paper,we classify the maximal subgroups of G,which normalizes a solvable subgroup N of GL(L,F...Let G be a classical group over an arbitrary field F,acting on an n-dimensional vector space V=V(n,F)over a field F.In this paper,we classify the maximal subgroups of G,which normalizes a solvable subgroup N of GL(L,F)not lying in F^(*)1_(V).展开更多
文摘Given a maximal subgroup M of a group G, a θ*-completion C of M is called an s*-completion if either C = G or there exists a subgroup D of G which is not a θ*-completion of M such that D contains C as a maximal subgroup. In this paper, we obtain several results on s*-completions which imply G to be solvable or supersolvable.
基金supported by the Deanship of Scientific Research(DSR) at King Abdulaziz University(KAU) represented by the Unit of Research Groups through the grant number(MG/31/01) for the group entitled "Abstract Algebra and its Applications"
文摘Let G be a finite group. A subgroup H of G is called an H-subgroup in G if NG(H)∩ H^g ≤ H for all g C G. A subgroup H of G is called a weakly H-subgroup in G if there exists a normal subgroup K of G such that G = HK and H N K is an H-subgroup in G. In this paper, we investigate the structure of the finite group G under the assumption that every subgroup of G of prime order or of order 4 is a weakly H-subgroup in G. Our results improve and generalize several recent results in the literature.
基金The Scientific Research Foundation of Sichuan Provincial Education Department of China(No.08zb082)
文摘A subgroup H of G is called s-conditionally permutable in G if for every Sylow subgroup T of G, there exists an element x ∈ G such that HTK = T^KH. In this paper, we investigate further the influence of s-conditionally permutability of some 2-maximal subgroups of the Sylow subgroup of G, on the structure of finite groups. New criteria for a group G being p-nilpotent are obtained.
基金Supported by the National Natural Science Foundation of Chinathe Natural Science Foundation of Guangxi Autonomous Region (No.0249001)
文摘For any saturated formation F of finite groups containing all supersolvable groups, the groups in F are characterized by F-abnormal maximal subgroups.
基金supported by National Nature Science Foundation of China (Grant No. 11771409)Wu Wen-Tsun Key Laboratory of Mathematics of Chinese Academy of Sciences
文摘Let σ={σi | i ∈ I} be some partition of the set of all primes P. A set H of subgroups of G is said to be a complete Hall σ-set of G if every member ≠ 1 of H is a Hall σi-subgroup of G, for some i ∈ I, and H contains exactly one Hall σi-subgroup of G for every σi ∈σ(G). A subgroup H of G is said to be:σ-permutable or σ-quasinormal in G if G possesses a complete Hall σ-set H such that HAx= AxH for all A ∈ H and x ∈ G:σ-subnormal in G if there is a subgroup chain A = A0≤A1≤···≤ At = G such that either Ai-1■Ai or Ai/(Ai-1)Ai is a finite σi-group for some σi ∈σ for all i = 1,..., t.If Mn < Mn-1 <···< M1 < M0 = G, where Mi is a maximal subgroup of Mi-1, i = 1, 2,..., n, then Mn is said to be an n-maximal subgroup of G. If each n-maximal subgroup of G is σ-subnormal(σ-quasinormal,respectively) in G but, in the case n > 1, some(n-1)-maximal subgroup is not σ-subnormal(not σ-quasinormal,respectively) in G, we write mσ(G)= n(mσq(G)= n, respectively).In this paper, we show that the parameters mσ(G) and mσq(G) make possible to bound the σ-nilpotent length lσ(G)(see below the definitions of the terms employed), the rank r(G) and the number |π(G)| of all distinct primes dividing the order |G| of a finite soluble group G. We also give the conditions under which a finite group is σ-soluble or σ-nilpotent, and describe the structure of a finite soluble group G in the case when mσ(G)=|π(G)|. Some known results are generalized.
文摘We study the problem concerning the influence of indices of maximal subgroups of a simple group on the structure of a group. We obtain a characterization property of all finite simple groups.
基金supported by National Natural Science Foundation of China (Grant No.11071150)Natural Science Foundation of Shanxi Province (Grant No. 2008012001)The Returned Abroad-student Found of Shanxi Province (Grant No. [2007]13–56)
文摘A subgroup A of a p-group G is said to be soft in G if CG(A) = A and |NG(A)/A| = p. In this paper we determined finite p-groups all of whose maximal abelian subgroups are soft; see Theorem A and Proposition 2.4.
基金supported by the National Natural Science Foundation of China(Nos.11371232,11371177)
文摘A subgroup of index p^k of a finite p-group G is called a k-maximal subgroup of G.Denote by d(G) the number of elements in a minimal generator-system of G and by δ_k(G) the number of k-maximal subgroups which do not contain the Frattini subgroup of G.In this paper,the authors classify the finite p-groups with δ_(d(G))(G) ≤ p^2 and δ_(d(G)-1)(G) = 0,respectively.
文摘In this paper, We show that the simple K\-3-groups can be characterized by the orders of their maximal abelian subgroups. That is, we have Theorem Let G be a finite group and M a simple K \-3-group. Then G is isomorphic to M if and only if the set of the orders of the maximal abelian subgoups of G is the same as that of M .
基金Supported by the Natural Science Foundation of Hubei Province( No.99J16 5 )
文摘By the property of the solvable group and the extending theorem of group, the authors acquired the structure of one type of Non-Abelian group. And we proved that when order is 10p n (p#2,5) and the sylowp-subgroup is cyclic, the group has twenty types. Whenp#3, it has 12 types and whenp=3, it has 8 types.
文摘For a positive integer n,we denote byπ(n)the set of all prime divisors of n.For a finite group G,the setπ(G):=π(|G|)is called the prime spectrum of G.Let M<G mean that M is a maximal subgroup of G.We put K(G)=max{|π(G)\π(M)|:M<G}and k(G)=min{|π(G)\π(M)|:M<G}.In this notice,using well-known number-theoretical results,we present a number of examples to show that both K(G)and k(G)are unbounded in general.This implies that the problem"Are k(G)and K(G)bounded by some constant k?",raised by Monakhov and Skiba in 2016,is solved in the negative.
基金The NSF(10871210)of Chinathe NSF(06023728)of Guangdong Province
文摘A subgroup H of a group G is said to have the sub-cover-avoidance property in G ffthereis a chief series 1 = G0 ≤ G1 ≤…≤ Gn - G, such that Gi-1(H ∩ Gi) G for every i = 1,2,... ,l. In this paper, we give some characteristic conditions for a group to be solvable under the assumptions that some subgroups of a group satisfy the sub-cover-avoidance property.
文摘Let G be a classical group over an arbitrary field F,acting on an n-dimensional vector space V=V(n,F)over a field F.In this paper,we classify the maximal subgroups of G,which normalizes a solvable subgroup N of GL(L,F)not lying in F^(*)1_(V).