期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Maximum Correntropy Criterion-Based UKF for Loosely Coupling INS and UWB in Indoor Localization
1
作者 Yan Wang You Lu +1 位作者 Yuqing Zhou Zhijian Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2673-2703,共31页
Indoor positioning is a key technology in today’s intelligent environments,and it plays a crucial role in many application areas.This paper proposed an unscented Kalman filter(UKF)based on the maximum correntropy cri... Indoor positioning is a key technology in today’s intelligent environments,and it plays a crucial role in many application areas.This paper proposed an unscented Kalman filter(UKF)based on the maximum correntropy criterion(MCC)instead of the minimummean square error criterion(MMSE).This innovative approach is applied to the loose coupling of the Inertial Navigation System(INS)and Ultra-Wideband(UWB).By introducing the maximum correntropy criterion,the MCCUKF algorithm dynamically adjusts the covariance matrices of the system noise and the measurement noise,thus enhancing its adaptability to diverse environmental localization requirements.Particularly in the presence of non-Gaussian noise,especially heavy-tailed noise,the MCCUKF exhibits superior accuracy and robustness compared to the traditional UKF.The method initially generates an estimate of the predicted state and covariance matrix through the unscented transform(UT)and then recharacterizes the measurement information using a nonlinear regression method at the cost of theMCC.Subsequently,the state and covariance matrices of the filter are updated by employing the unscented transformation on the measurement equations.Moreover,to mitigate the influence of non-line-of-sight(NLOS)errors positioning accuracy,this paper proposes a k-medoid clustering algorithm based on bisection k-means(Bikmeans).This algorithm preprocesses the UWB distance measurements to yield a more precise position estimation.Simulation results demonstrate that MCCUKF is robust to the uncertainty of UWB and realizes stable integration of INS and UWB systems. 展开更多
关键词 maximum correntropy criterion unscented Kalman filter inertial navigation system ULTRA-WIDEBAND bisecting kmeans clustering algorithm
下载PDF
Maximum Correntropy Kalman Filtering for Non-Gaussian Systems With State Saturations and Stochastic Nonlinearities 被引量:1
2
作者 Bo Shen Xuelin Wang Lei Zou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第5期1223-1233,共11页
This paper tackles the maximum correntropy Kalman filtering problem for discrete time-varying non-Gaussian systems subject to state saturations and stochastic nonlinearities. The stochastic nonlinearities, which take ... This paper tackles the maximum correntropy Kalman filtering problem for discrete time-varying non-Gaussian systems subject to state saturations and stochastic nonlinearities. The stochastic nonlinearities, which take the form of statemultiplicative noises, are introduced in systems to describe the phenomenon of nonlinear disturbances. To resist non-Gaussian noises, we consider a new performance index called maximum correntropy criterion(MCC) which describes the similarity between two stochastic variables. To enhance the “robustness” of the kernel parameter selection on the resultant filtering performance, the Cauchy kernel function is adopted to calculate the corresponding correntropy. The goal of this paper is to design a Kalman-type filter for the underlying systems via maximizing the correntropy between the system state and its estimate. By taking advantage of an upper bound on the one-step prediction error covariance, a modified MCC-based performance index is constructed. Subsequently, with the assistance of a fixed-point theorem, the filter gain is obtained by maximizing the proposed cost function. In addition, a sufficient condition is deduced to ensure the uniqueness of the fixed point. Finally, the validity of the filtering method is tested by simulating a numerical example. 展开更多
关键词 Fixed-point theorem maximum correntropy criterion non-Gaussian noises state saturations stochastic nonlinearities
下载PDF
Maximum correntropy-based pseudolinear Kalman filter for passive bearings-only target tracking
3
作者 Asfia Urooj Rahul Radhakrishnan 《Control Theory and Technology》 EI CSCD 2024年第2期269-281,共13页
This paper proposes a new approach for solving the bearings-only target tracking (BoT) problem by introducing a maximum correntropy criterion to the pseudolinear Kalman filter (PLKF). PLKF has been a popular choice fo... This paper proposes a new approach for solving the bearings-only target tracking (BoT) problem by introducing a maximum correntropy criterion to the pseudolinear Kalman filter (PLKF). PLKF has been a popular choice for solving BoT problems owing to the reduced computational complexity. However, the coupling between the measurement vector and pseudolinear noise causes bias in PLKF. To address this issue, a bias-compensated PLKF (BC-PLKF) under the assumption of Gaussian noise was formulated. However, this assumption may not be valid in most practical cases. Therefore, a bias-compensated PLKF with maximum correntropy criterion is introduced, resulting in two new filters: maximum correntropy pseudolinear Kalman filter (MC-PLKF) and maximum correntropy bias-compensated pseudolinear Kalman filter (MC-BC-PLKF). To demonstrate the performance of the proposed estimators, a comparative analysis assuming large outliers in the process and measurement model of 2D BoT is conducted. These large outliers are modeled as non-Gaussian noises with diverse noise distributions that combine Gaussian and Laplacian noises. The simulation results are validated using root mean square error (RMSE), average RMSE (ARMSE), percentage of track loss and bias norm. Compared to PLKF and BC-PLKF, all the proposed maximum correntropy-based filters (MC-PLKF and MC-BC-PLKF) performed with superior estimation accuracy. 展开更多
关键词 Bearings-only target tracking Pseudolinear Kalman filter maximum correntropy criterion Non-Gaussian noise
原文传递
Non-iterative Cauchy kernel-based maximum correntropy cubature Kalman filter for non-Gaussian systems 被引量:1
4
作者 Aastha Dak Rahul Radhakrishnan 《Control Theory and Technology》 EI CSCD 2022年第4期465-474,共10页
This article addresses the nonlinear state estimation problem where the conventional Gaussian assumption is completely relaxed.Here,the uncertainties in process and measurements are assumed non-Gaussian,such that the ... This article addresses the nonlinear state estimation problem where the conventional Gaussian assumption is completely relaxed.Here,the uncertainties in process and measurements are assumed non-Gaussian,such that the maximum correntropy criterion(MCC)is chosen to replace the conventional minimum mean square error criterion.Furthermore,the MCC is realized using Gaussian as well as Cauchy kernels by defining an appropriate cost function.Simulation results demonstrate the superior estimation accuracy of the developed estimators for two nonlinear estimation problems. 展开更多
关键词 maximum correntropy criterion Cubature Kalman filter Non-Gaussian noise Cauchy kernel Gaussian kernel
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部