Environmental conditions determining the timing of the lifetime maximum intensities of tropical cyclones(TCs)are investigated for the TCs over the western North Pacific during the period 2008-2017.The results show tha...Environmental conditions determining the timing of the lifetime maximum intensities of tropical cyclones(TCs)are investigated for the TCs over the western North Pacific during the period 2008-2017.The results show that the land controls the timings of the lifetime maximum intensities in 42% of the TCs over this basin,indicating that accurate track forecasts are beneficial for TC intensity forecasts.With respect to other TCs that are not affected by the land(i.e.,Ocean-TCs),the timings of their lifetime maximum intensities are determined by multiple oceanic factors.In particular,interactions between TCs and cold-core eddies occur in a large proportion(nearly 60%)of Ocean-TCs at or shortly after the times of their lifetime maximum intensities,especially in strong TCs(categories 4 and 5),suggesting that a consideration of the above interactions is necessary for improving TC intensity forecasting skills.In addition,unfavorable oceanic heat content conditions become common as the latitude increases over 25°N,influencing half of the Ocean-TCs.Strong vertical wind shear contributes detrimentally to the atmospheric environment in 17% of the TCs over this basin,especially in moderate and weak TCs.In contrast,neither the maximum potential intensity nor the humidity in the middle level of the atmosphere plays dominant roles when TCs turn from their peak intensities to weakening.展开更多
The classical tropical cyclone(TC)maximum intensity theory of Emanuel suggests that the maximum azimuthal wind of TC depends linearly on the ratio of surface exchange coefficients for enthalpy and momentum(C_(k)and C_...The classical tropical cyclone(TC)maximum intensity theory of Emanuel suggests that the maximum azimuthal wind of TC depends linearly on the ratio of surface exchange coefficients for enthalpy and momentum(C_(k)and C_(d)).In this study,a series of sensitivity experiments are conducted with the three-dimensional Cloud Model 1(CM1),by fixing the ratio of C_(k)/C_(d)but varying the specific values of C_(k)and C_(d)simultaneously.The results show significant variations in the simulated TC maximum intensity by varying C_(k)and C_(d),even if their ratio is fixed.Overall,the maximum intensity increases steadily with increasing C_(k)and C_(d)when their value is smaller than 1.00×10^(-3),and then this increasing trend slows down with further increases in the coefficients.Two previous theoretical frameworks—one based on gradient wind balance and the other incorporating the unbalanced terms-are applied to calculate the maximum potential intensity(PI).The calculated value of the former shows little variation when varying the specific values of C_(k)and C_(d),while the latter shows larger values with increases in both C_(k)and C_(d).Further examination suggests that the unbalanced effect plays a key role in contributing to the increasing intensity with increasing C_(k)and C_(d).展开更多
Systematically determining the discriminatory power of various rainfall properties and their combinations in identifying debris flow occurrence is crucial for early warning systems.In this study,we evaluated the discr...Systematically determining the discriminatory power of various rainfall properties and their combinations in identifying debris flow occurrence is crucial for early warning systems.In this study,we evaluated the discriminatory power of different univariate and multivariate rainfall threshold models in identifying triggering conditions of debris flow in the Jiangjia Gully,Yunnan Province,China.The univariate models used single rainfall properties as indicators,including total rainfall(R_(tot)),rainfall duration(D),mean intensity(I_(mean)),absolute energy(Eabs),storm kinetic energy(E_(s)),antecedent rainfall(R_(a)),and maximum rainfall intensity over various durations(I_(max_dur)).The evaluation reveals that the I_(max_dur)and Eabs models have the best performance,followed by the E_(s),R_(tot),and I_(mean)models,while the D and R_(a)models have poor performances.Specifically,the I_(max_dur)model has the highest performance metrics at a 40-min duration.We used logistic regression to combine at least two rainfall properties to establish multivariate threshold models.The results show that adding D or R_(a)to the models dominated by Eabs,E_(s),R_(tot),or I_(mean)generally improve their performances,specifically when D is combined with I_(mean)or when R_(a)is combined with Eabs or E_(s).Including R_(a)in the I_(max_dur)model,it performs better than the univariate I_(max_dur)model.A power-law relationship between I_(max_dur)and R_(a)or between Eabs and R_(a)has better performance than the traditional I_(mean)–D model,while the performance of the E_(s)–R_(a)model is moderate.Our evaluation reemphasizes the important role of the maximum intensity over short durations in debris flow occurrence.It also highlights the importance of systematically investigating the role of R_(a)in establishing rainfall thresholds for triggering debris flow.Given the regional variations in rainfall patterns worldwide,it is necessary to evaluate the findings of this study across diverse watersheds.展开更多
Decadal variations of extreme tropical cyclones (TCs) influencing China were. investigated based on the tracks, landfall information, precipitation and wind data during 1949-2009. The extreme landfall date events ar...Decadal variations of extreme tropical cyclones (TCs) influencing China were. investigated based on the tracks, landfall information, precipitation and wind data during 1949-2009. The extreme landfall date events are less in the 1970s and 2000s. The number of extreme events of maximum wind speed and minimum pressure near TC's center reached the highest in the 2000s. The extreme rain duration events had the highest frequence in the 1970s, and the extreme strong wind duration events had the maximum frequence in the 1980s. The number of stations whereat the extreme maximum daily precipitation or process precipitation is observed, is the largest in the 1960s, and the number of stations whereat daily maximum wind speed events axe observed, is the largest in the 1980s.展开更多
The maximum traffic intensity supported by a low earth orbit(LEO) mobile satellite system(MSS)(LEO-MSS) is important in practical application for providing satisfactory service. An analytical approach is propose...The maximum traffic intensity supported by a low earth orbit(LEO) mobile satellite system(MSS)(LEO-MSS) is important in practical application for providing satisfactory service. An analytical approach is proposed for determining the maximum traffic intensity of guaranteed handover(GH) scheme and channel complete sharing(CCS) scheme in LEO-MSS under quality of service(Qo S) constraints. By evaluating performance of these two schemes, the relationship between the traffic intensity and the Qo S constraints is established. The expressions of maximum traffic intensity of GH scheme and CCS scheme are deduced. Compared with the traditional method, the proposed analytical approach is more computationally efficient owing to the needlessness of the repeated iteration calculation. It also avoids the complex choice of the initial value of new call traffic intensity and its increment. Lastly, the accuracy and validity of the analysis approach have been verified by computer simulations.展开更多
The occurrence of first hurricane in early summer signifies the onset of an active Atlantic hurricane season.The interannual variation of this hurricane onset date is examined for the period 1979-2013.It is found that...The occurrence of first hurricane in early summer signifies the onset of an active Atlantic hurricane season.The interannual variation of this hurricane onset date is examined for the period 1979-2013.It is found that the onset date has a marked interannual variation.The standard deviation of the interannual variation of the onset day is 17.5 days,with the climatological mean onset happening on July 23.A diagnosis of tropical cyclone(TC) genesis potential index(GPI) indicates that the major difference between an early and a late onset group lies in the maximum potential intensity(MPI).A further diagnosis of the MPI shows that it is primarily controlled by the local SST anomaly(SSTA).Besides the SSTA,vertical shear and mid-tropospheric relative humidity anomalies also contribute significantly to the GPI difference between the early and late onset groups.It is found that the anomalous warm(cold) SST over the tropical Atlantic,while uncorrected with the Nino3 index,persists from the preceding winter to concurrent summer in the early(late) onset group.The net surface heat flux anomaly always tends to damp the SSTA,which suggests that ocean dynamics may play a role in maintaining the SSTA in the tropical Atlantic.The SSTA pattern with a maximum center in northeastern tropical Atlantic appears responsible for generating the observed wind and moisture anomalies over the main TC development region.A further study is needed to understand the initiation mechanism of the SSTA in the Atlantic.展开更多
基金National Key Research and Development Program of China(2018YFC1506402)National Natural Scientific Foundations of China(41575061,41775061)JSPS KAKENHI(JP18H01283)。
文摘Environmental conditions determining the timing of the lifetime maximum intensities of tropical cyclones(TCs)are investigated for the TCs over the western North Pacific during the period 2008-2017.The results show that the land controls the timings of the lifetime maximum intensities in 42% of the TCs over this basin,indicating that accurate track forecasts are beneficial for TC intensity forecasts.With respect to other TCs that are not affected by the land(i.e.,Ocean-TCs),the timings of their lifetime maximum intensities are determined by multiple oceanic factors.In particular,interactions between TCs and cold-core eddies occur in a large proportion(nearly 60%)of Ocean-TCs at or shortly after the times of their lifetime maximum intensities,especially in strong TCs(categories 4 and 5),suggesting that a consideration of the above interactions is necessary for improving TC intensity forecasting skills.In addition,unfavorable oceanic heat content conditions become common as the latitude increases over 25°N,influencing half of the Ocean-TCs.Strong vertical wind shear contributes detrimentally to the atmospheric environment in 17% of the TCs over this basin,especially in moderate and weak TCs.In contrast,neither the maximum potential intensity nor the humidity in the middle level of the atmosphere plays dominant roles when TCs turn from their peak intensities to weakening.
基金Supported by the National Natural Science Foundation of China(42022033 and 41875062)Natural Science Foundation of Hunan Province,China(2020JJ3040)。
文摘The classical tropical cyclone(TC)maximum intensity theory of Emanuel suggests that the maximum azimuthal wind of TC depends linearly on the ratio of surface exchange coefficients for enthalpy and momentum(C_(k)and C_(d)).In this study,a series of sensitivity experiments are conducted with the three-dimensional Cloud Model 1(CM1),by fixing the ratio of C_(k)/C_(d)but varying the specific values of C_(k)and C_(d)simultaneously.The results show significant variations in the simulated TC maximum intensity by varying C_(k)and C_(d),even if their ratio is fixed.Overall,the maximum intensity increases steadily with increasing C_(k)and C_(d)when their value is smaller than 1.00×10^(-3),and then this increasing trend slows down with further increases in the coefficients.Two previous theoretical frameworks—one based on gradient wind balance and the other incorporating the unbalanced terms-are applied to calculate the maximum potential intensity(PI).The calculated value of the former shows little variation when varying the specific values of C_(k)and C_(d),while the latter shows larger values with increases in both C_(k)and C_(d).Further examination suggests that the unbalanced effect plays a key role in contributing to the increasing intensity with increasing C_(k)and C_(d).
基金supported by the National Key R&D Program of China(No.2023YFC3007205)the National Natural Science Foundation of China(Nos.42271013,42077440)Project of the Department of Science and Technology of Sichuan Province(No.2023ZHCG0012).
文摘Systematically determining the discriminatory power of various rainfall properties and their combinations in identifying debris flow occurrence is crucial for early warning systems.In this study,we evaluated the discriminatory power of different univariate and multivariate rainfall threshold models in identifying triggering conditions of debris flow in the Jiangjia Gully,Yunnan Province,China.The univariate models used single rainfall properties as indicators,including total rainfall(R_(tot)),rainfall duration(D),mean intensity(I_(mean)),absolute energy(Eabs),storm kinetic energy(E_(s)),antecedent rainfall(R_(a)),and maximum rainfall intensity over various durations(I_(max_dur)).The evaluation reveals that the I_(max_dur)and Eabs models have the best performance,followed by the E_(s),R_(tot),and I_(mean)models,while the D and R_(a)models have poor performances.Specifically,the I_(max_dur)model has the highest performance metrics at a 40-min duration.We used logistic regression to combine at least two rainfall properties to establish multivariate threshold models.The results show that adding D or R_(a)to the models dominated by Eabs,E_(s),R_(tot),or I_(mean)generally improve their performances,specifically when D is combined with I_(mean)or when R_(a)is combined with Eabs or E_(s).Including R_(a)in the I_(max_dur)model,it performs better than the univariate I_(max_dur)model.A power-law relationship between I_(max_dur)and R_(a)or between Eabs and R_(a)has better performance than the traditional I_(mean)–D model,while the performance of the E_(s)–R_(a)model is moderate.Our evaluation reemphasizes the important role of the maximum intensity over short durations in debris flow occurrence.It also highlights the importance of systematically investigating the role of R_(a)in establishing rainfall thresholds for triggering debris flow.Given the regional variations in rainfall patterns worldwide,it is necessary to evaluate the findings of this study across diverse watersheds.
基金supported by the National Key Technology Research and Development Program(No. 2008BAC44B03,2007BAC29B04)
文摘Decadal variations of extreme tropical cyclones (TCs) influencing China were. investigated based on the tracks, landfall information, precipitation and wind data during 1949-2009. The extreme landfall date events are less in the 1970s and 2000s. The number of extreme events of maximum wind speed and minimum pressure near TC's center reached the highest in the 2000s. The extreme rain duration events had the highest frequence in the 1970s, and the extreme strong wind duration events had the maximum frequence in the 1980s. The number of stations whereat the extreme maximum daily precipitation or process precipitation is observed, is the largest in the 1960s, and the number of stations whereat daily maximum wind speed events axe observed, is the largest in the 1980s.
基金supported by the National Natural Science Foundation of China (61272518)the Beijing Key Laboratory of Work Safety Intelligent Monitoring (Beijing University of Posts and Telecommunications)
文摘The maximum traffic intensity supported by a low earth orbit(LEO) mobile satellite system(MSS)(LEO-MSS) is important in practical application for providing satisfactory service. An analytical approach is proposed for determining the maximum traffic intensity of guaranteed handover(GH) scheme and channel complete sharing(CCS) scheme in LEO-MSS under quality of service(Qo S) constraints. By evaluating performance of these two schemes, the relationship between the traffic intensity and the Qo S constraints is established. The expressions of maximum traffic intensity of GH scheme and CCS scheme are deduced. Compared with the traditional method, the proposed analytical approach is more computationally efficient owing to the needlessness of the repeated iteration calculation. It also avoids the complex choice of the initial value of new call traffic intensity and its increment. Lastly, the accuracy and validity of the analysis approach have been verified by computer simulations.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2015CB453200)National Natural Science Foundation of China(41475084)+10 种基金ONR Grant(N00014-16-12260)NRL Grant(N00173-13-1-G902)Jiangsu Natural Science Key Project(BK20150062)Jiangsu Shuang-Chuang Team(R2014SCT001)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(14KJB170015)the Startup Foundation for Introducing Talent of NUIST(2013x018)Civil Aviation Center Program(KDQC1302)The International Pacific Research Center is partially sponsored by the Japan Agency for Marine-Earth Science and Technology(JAMSTEC)SOEST contribution number 9619IPRC contribution number 1186ESMC number 103
文摘The occurrence of first hurricane in early summer signifies the onset of an active Atlantic hurricane season.The interannual variation of this hurricane onset date is examined for the period 1979-2013.It is found that the onset date has a marked interannual variation.The standard deviation of the interannual variation of the onset day is 17.5 days,with the climatological mean onset happening on July 23.A diagnosis of tropical cyclone(TC) genesis potential index(GPI) indicates that the major difference between an early and a late onset group lies in the maximum potential intensity(MPI).A further diagnosis of the MPI shows that it is primarily controlled by the local SST anomaly(SSTA).Besides the SSTA,vertical shear and mid-tropospheric relative humidity anomalies also contribute significantly to the GPI difference between the early and late onset groups.It is found that the anomalous warm(cold) SST over the tropical Atlantic,while uncorrected with the Nino3 index,persists from the preceding winter to concurrent summer in the early(late) onset group.The net surface heat flux anomaly always tends to damp the SSTA,which suggests that ocean dynamics may play a role in maintaining the SSTA in the tropical Atlantic.The SSTA pattern with a maximum center in northeastern tropical Atlantic appears responsible for generating the observed wind and moisture anomalies over the main TC development region.A further study is needed to understand the initiation mechanism of the SSTA in the Atlantic.