By using maximum likelihood classification, several landscape indexes have been adopted to evaluate landscape structure of the irrigated area of Hongsibao Town, and landscape pattern and dynamic change of Hongsibao in...By using maximum likelihood classification, several landscape indexes have been adopted to evaluate landscape structure of the irrigated area of Hongsibao Town, and landscape pattern and dynamic change of Hongsibao in 1989, 1999, 2003 and 2008 had been analyzed based on landscape patch, landscape type and transfer matrix. The results show that landscape pattern had changed obviously, patch number, fragmentation and dominance had increased, evenness had decreased, and landscape shape had become regular in the irrigated area of Hongsibao Town from 1989 to 2008. The primary landscape type in 1989 was grassland and in 2008 was sand, directly influenced by human activities.展开更多
In this paper,a new likelihood-based method for classifying phase-amplitude-modulated signals in Additive White Gaussian Noise (AWGN) is proposed.The method introduces a new Markov Chain Monte Carlo (MCMC) algorithm,c...In this paper,a new likelihood-based method for classifying phase-amplitude-modulated signals in Additive White Gaussian Noise (AWGN) is proposed.The method introduces a new Markov Chain Monte Carlo (MCMC) algorithm,called the Adaptive Metropolis (AM) algorithm,to directly generate the samples of the target posterior distribution and implement the multidimensional integrals of likelihood function.Modulation classification is achieved along with joint estimation of unknown parameters by running an ergodic Markov Chain.Simulation results show that the proposed method has the advantages of high accuracy and robustness to phase and frequency offset.展开更多
High spectral,spatial,vertical and temporal resolution data are increasingly available and result in the serious challenge to pro-cess big remote-sensing images effectively and efficiently.This article introduced how ...High spectral,spatial,vertical and temporal resolution data are increasingly available and result in the serious challenge to pro-cess big remote-sensing images effectively and efficiently.This article introduced how to conduct supervised image classification by implementing maximum likelihood classification(MLC)over big image data on a field programmable gate array(FPGA)cloud.By comparing our prior work of implementing MLC on conventional cluster of multicore computers and graphics processing unit,it can be concluded that FPGAs can achieve the best performance in comparison to conventional CPU cluster and K40 GPU,and are more energy efficient.The proposed pipelined thread approach can be extended to other image-processing solutions to handle big data in the future.展开更多
Herbicide use is rising globally to enhance food production,causing harm to environment and the ecosystem.Precision agriculture suggests variable-rate herbicide application based on weed densities to mitigate adverse ...Herbicide use is rising globally to enhance food production,causing harm to environment and the ecosystem.Precision agriculture suggests variable-rate herbicide application based on weed densities to mitigate adverse effects of herbicides.Accurate weed density estimation using advanced computer vision techniques like deep learning requires large labelled agriculture data.Labelling large agriculture data at pixel level is a time-consuming and tedious job.In this paper,a methodology is developed to accelerate manual labelling of pixels using a two-step procedure.In the first step,the background and foreground are segmented using maximum likelihood classification,and in the second step,the weed pixels are manually labelled.Such labelled data is used to train semantic segmentation models,which classify crop and background pixels as one class,and all other vegetation as the second class.This paper evaluates the proposed methodology on high-resolution colour images of canola fields and makes performance comparison of deep learning meta-architectures like SegNet and UNET and encoder blocks like VGG16 and ResNet-50.ResNet-50 based SegNet model has shown the best results with mean intersection over union value of 0.8288 and frequency weighted intersection over union value of 0.9869.展开更多
A low-complexity likelihood methodology is proposed for automatic modulation classification of orthogonal space-time block code(STBC)based multiple-input multiple-output(MIMO)systems.We exploit the zero-forcing equali...A low-complexity likelihood methodology is proposed for automatic modulation classification of orthogonal space-time block code(STBC)based multiple-input multiple-output(MIMO)systems.We exploit the zero-forcing equalization technique to modify the typical average likelihood ratio test(ALRT)function.The proposed ALRT function has a low computational complexity compared to existing ALRT functions for MIMO systems classification.The proposed approach is analyzed for blind channel scenarios when the receiver has imperfect channel state information(CSI).Performance analysis is carried out for scenarios with different numbers of antennas.Alamouti-STBC systems with 2×2 and 2×1 and space-time transmit diversity with a 4×4 transmit and receive antenna configuration are considered to verify the proposed approach.Some popular modulation schemes are used as the modulation test pool.Monte-Carlo simulations are performed to evaluate the proposed methodology,using the probability of correct classification as the criterion.Simulation results show that the proposed approach has high classification accuracy at low signal-to-noise ratios and exhibits robust behavior against high CSI estimation error variance.展开更多
Supervised image classification has been widely utilized in a variety of remote sensing applications.When large volume of satellite imagery data and aerial photos are increasingly available,high-performance image proc...Supervised image classification has been widely utilized in a variety of remote sensing applications.When large volume of satellite imagery data and aerial photos are increasingly available,high-performance image processing solutions are required to handle large scale of data.This paper introduces how maximum likelihood classification approach is parallelized for implementation on a computer cluster and a graphics processing unit to achieve high performance when processing big imagery data.The solution is scalable and satisfies the need of change detection,object identification,and exploratory analysis on large-scale high-resolution imagery data in remote sensing applications.展开更多
Many supervised classification algorithms have been proposed, however, they are rarely evaluated for specific application. This research examines the performance of machine learning classifiers support vector machine ...Many supervised classification algorithms have been proposed, however, they are rarely evaluated for specific application. This research examines the performance of machine learning classifiers support vector machine (SVM), neural network (NN), Random Forest (RF) against maximum classifier (MLC) (traditional supervised classifier) in forest resources and land cover categorization, based on combination of Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) and Landsat Thematic Mapper (TM) data, in Northern Tanzania. Various data categories based on Landsat TM surface reflectance, ALOS PALSAR backscattering and their derivatives were generated for various classification scenarios. Then a separate and joint processing of Landsat and ALOS PALSAR data were executed using SVM, NN, RF and ML classifiers. The overall classification accuracy (OA), kappa coefficient (KC) and F1 score index values were computed. The result proves the robustness of SVM and RF in classification of forest resource and land cover using mere Landsat data and integration of Landsat and PALSAR (average OA = 92% and F1 = 0.7 to 1). A two sample t-statistics was utilized to evaluate the performance of the classifiers using different data categories. SVM and RF indicate there is no significance difference at 5% significance level. SVM and RF show a significant difference when compared to NN and ML. Generally, the study suggests that parametric classifiers indicate better performance compared to parametric classifier.展开更多
Satellite image classification has been used for long time in the field of remote sensing since classification results are used in environmental research, agriculture, climate change and natural resource management. T...Satellite image classification has been used for long time in the field of remote sensing since classification results are used in environmental research, agriculture, climate change and natural resource management. The cocoa landscape of Ghana is complex and diverse in nature, composing of mixture of closed forest, open forest, settlements, croplands and cocoa farms which make mapping the landscape difficult. The purpose of this research is to assess and compare the classification performances of three machine learning classifiers: Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN) and a statistical classification algorithm: Maximum Likelihood (ML) to know which classifier is best suited for mapping the cocoa landscape of Ghana using Juaboso and Bia West districts of Ghana as study area. A representative sampling approach was adopted to collect 1246 sample points for the various Land Use/Land Cover (LULC) types. These sample points were divided at random into 869 which form 70% for classification and 377 which constitute 30% of the total sample points for validation. The Stacked sentinel-2 image, classification data and validation data storing the identities of the LULC classes were imported in R to run supervised classification for each classifier. The classification results show that the highest overall accuracy and kappa statistics were produced by the support vector machine (86.47%, 0.7902);next is the artificial neural network (85.15%, 0.7700), followed by the random forest (84.08%, 0.7559) and finally the maximum likelihood (78.51%, 0.6668). The final LULC map produced under this study can be used to monitor cocoa driven deforestation especially in the gazetted forest and game reserves. This map will also be very useful in the national forest monitoring framework for the REDD + cocoa landscape project.展开更多
Urbanization posits the expression of urban expanse expansion due to population growth, rise in built-up areas, high population density and its correspondingly urban way of life. Unrestrained impetus of development an...Urbanization posits the expression of urban expanse expansion due to population growth, rise in built-up areas, high population density and its correspondingly urban way of life. Unrestrained impetus of development and land use land cover change (LULCC) portent several issues such as unlawful urban sprawl, loss of agricultural land, forest loss and other associated complications. This study analyzed the dynamics of urbanization and other LULCC in Ghana’s Greater Kumasi area via Landsat images (TM 1986, OLI 2013 and OLI 2023) using ERDAS Imagine, Idrisi and ArcGIS software. Implementing supervised classification technique, the Maximum Likelihood Classifier (MLC) procedure was employed to categories the study area into five LULC classes. Accuracy assessment undertaken on the resultant LULC maps was deemed very satisfactory. The results from 1986-2023 pointed to an upsurge in a built-up extent as of 8% to 41%, a decrease in Closed Forest from 9% to 4%, another decrease in Open Forests from 64% to 33%, a slight increase from 16% to 20% in farmlands and a stable level of water share. Further analysis indicated that the study area had undergone LULCC within the periods 1986-2013 and 2013-2023 at 60% and 37% respectively. The findings showed uncontrolled urban sprawling along major roads and forest loss as deforestation outside protected areas and degradation in protected forest. The monitoring of urbanization and other LULCC is important for local, and national governments and other bodies charged with the implementation of programs and policies that manage and utilize natural resources. Development adapts to mitigate the effect on the environment.展开更多
文摘By using maximum likelihood classification, several landscape indexes have been adopted to evaluate landscape structure of the irrigated area of Hongsibao Town, and landscape pattern and dynamic change of Hongsibao in 1989, 1999, 2003 and 2008 had been analyzed based on landscape patch, landscape type and transfer matrix. The results show that landscape pattern had changed obviously, patch number, fragmentation and dominance had increased, evenness had decreased, and landscape shape had become regular in the irrigated area of Hongsibao Town from 1989 to 2008. The primary landscape type in 1989 was grassland and in 2008 was sand, directly influenced by human activities.
文摘In this paper,a new likelihood-based method for classifying phase-amplitude-modulated signals in Additive White Gaussian Noise (AWGN) is proposed.The method introduces a new Markov Chain Monte Carlo (MCMC) algorithm,called the Adaptive Metropolis (AM) algorithm,to directly generate the samples of the target posterior distribution and implement the multidimensional integrals of likelihood function.Modulation classification is achieved along with joint estimation of unknown parameters by running an ergodic Markov Chain.Simulation results show that the proposed method has the advantages of high accuracy and robustness to phase and frequency offset.
基金This research was partially supported by the National Science Foundation through the award SMA-1416509.
文摘High spectral,spatial,vertical and temporal resolution data are increasingly available and result in the serious challenge to pro-cess big remote-sensing images effectively and efficiently.This article introduced how to conduct supervised image classification by implementing maximum likelihood classification(MLC)over big image data on a field programmable gate array(FPGA)cloud.By comparing our prior work of implementing MLC on conventional cluster of multicore computers and graphics processing unit,it can be concluded that FPGAs can achieve the best performance in comparison to conventional CPU cluster and K40 GPU,and are more energy efficient.The proposed pipelined thread approach can be extended to other image-processing solutions to handle big data in the future.
文摘Herbicide use is rising globally to enhance food production,causing harm to environment and the ecosystem.Precision agriculture suggests variable-rate herbicide application based on weed densities to mitigate adverse effects of herbicides.Accurate weed density estimation using advanced computer vision techniques like deep learning requires large labelled agriculture data.Labelling large agriculture data at pixel level is a time-consuming and tedious job.In this paper,a methodology is developed to accelerate manual labelling of pixels using a two-step procedure.In the first step,the background and foreground are segmented using maximum likelihood classification,and in the second step,the weed pixels are manually labelled.Such labelled data is used to train semantic segmentation models,which classify crop and background pixels as one class,and all other vegetation as the second class.This paper evaluates the proposed methodology on high-resolution colour images of canola fields and makes performance comparison of deep learning meta-architectures like SegNet and UNET and encoder blocks like VGG16 and ResNet-50.ResNet-50 based SegNet model has shown the best results with mean intersection over union value of 0.8288 and frequency weighted intersection over union value of 0.9869.
基金Project supported by the National Natural Science Foundation of China(Nos.61172078,61571224,and 61571225)Six Talent Peaks Pro ject in Jiangsu Province,China.
文摘A low-complexity likelihood methodology is proposed for automatic modulation classification of orthogonal space-time block code(STBC)based multiple-input multiple-output(MIMO)systems.We exploit the zero-forcing equalization technique to modify the typical average likelihood ratio test(ALRT)function.The proposed ALRT function has a low computational complexity compared to existing ALRT functions for MIMO systems classification.The proposed approach is analyzed for blind channel scenarios when the receiver has imperfect channel state information(CSI).Performance analysis is carried out for scenarios with different numbers of antennas.Alamouti-STBC systems with 2×2 and 2×1 and space-time transmit diversity with a 4×4 transmit and receive antenna configuration are considered to verify the proposed approach.Some popular modulation schemes are used as the modulation test pool.Monte-Carlo simulations are performed to evaluate the proposed methodology,using the probability of correct classification as the criterion.Simulation results show that the proposed approach has high classification accuracy at low signal-to-noise ratios and exhibits robust behavior against high CSI estimation error variance.
文摘Supervised image classification has been widely utilized in a variety of remote sensing applications.When large volume of satellite imagery data and aerial photos are increasingly available,high-performance image processing solutions are required to handle large scale of data.This paper introduces how maximum likelihood classification approach is parallelized for implementation on a computer cluster and a graphics processing unit to achieve high performance when processing big imagery data.The solution is scalable and satisfies the need of change detection,object identification,and exploratory analysis on large-scale high-resolution imagery data in remote sensing applications.
文摘Many supervised classification algorithms have been proposed, however, they are rarely evaluated for specific application. This research examines the performance of machine learning classifiers support vector machine (SVM), neural network (NN), Random Forest (RF) against maximum classifier (MLC) (traditional supervised classifier) in forest resources and land cover categorization, based on combination of Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) and Landsat Thematic Mapper (TM) data, in Northern Tanzania. Various data categories based on Landsat TM surface reflectance, ALOS PALSAR backscattering and their derivatives were generated for various classification scenarios. Then a separate and joint processing of Landsat and ALOS PALSAR data were executed using SVM, NN, RF and ML classifiers. The overall classification accuracy (OA), kappa coefficient (KC) and F1 score index values were computed. The result proves the robustness of SVM and RF in classification of forest resource and land cover using mere Landsat data and integration of Landsat and PALSAR (average OA = 92% and F1 = 0.7 to 1). A two sample t-statistics was utilized to evaluate the performance of the classifiers using different data categories. SVM and RF indicate there is no significance difference at 5% significance level. SVM and RF show a significant difference when compared to NN and ML. Generally, the study suggests that parametric classifiers indicate better performance compared to parametric classifier.
文摘Satellite image classification has been used for long time in the field of remote sensing since classification results are used in environmental research, agriculture, climate change and natural resource management. The cocoa landscape of Ghana is complex and diverse in nature, composing of mixture of closed forest, open forest, settlements, croplands and cocoa farms which make mapping the landscape difficult. The purpose of this research is to assess and compare the classification performances of three machine learning classifiers: Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN) and a statistical classification algorithm: Maximum Likelihood (ML) to know which classifier is best suited for mapping the cocoa landscape of Ghana using Juaboso and Bia West districts of Ghana as study area. A representative sampling approach was adopted to collect 1246 sample points for the various Land Use/Land Cover (LULC) types. These sample points were divided at random into 869 which form 70% for classification and 377 which constitute 30% of the total sample points for validation. The Stacked sentinel-2 image, classification data and validation data storing the identities of the LULC classes were imported in R to run supervised classification for each classifier. The classification results show that the highest overall accuracy and kappa statistics were produced by the support vector machine (86.47%, 0.7902);next is the artificial neural network (85.15%, 0.7700), followed by the random forest (84.08%, 0.7559) and finally the maximum likelihood (78.51%, 0.6668). The final LULC map produced under this study can be used to monitor cocoa driven deforestation especially in the gazetted forest and game reserves. This map will also be very useful in the national forest monitoring framework for the REDD + cocoa landscape project.
文摘Urbanization posits the expression of urban expanse expansion due to population growth, rise in built-up areas, high population density and its correspondingly urban way of life. Unrestrained impetus of development and land use land cover change (LULCC) portent several issues such as unlawful urban sprawl, loss of agricultural land, forest loss and other associated complications. This study analyzed the dynamics of urbanization and other LULCC in Ghana’s Greater Kumasi area via Landsat images (TM 1986, OLI 2013 and OLI 2023) using ERDAS Imagine, Idrisi and ArcGIS software. Implementing supervised classification technique, the Maximum Likelihood Classifier (MLC) procedure was employed to categories the study area into five LULC classes. Accuracy assessment undertaken on the resultant LULC maps was deemed very satisfactory. The results from 1986-2023 pointed to an upsurge in a built-up extent as of 8% to 41%, a decrease in Closed Forest from 9% to 4%, another decrease in Open Forests from 64% to 33%, a slight increase from 16% to 20% in farmlands and a stable level of water share. Further analysis indicated that the study area had undergone LULCC within the periods 1986-2013 and 2013-2023 at 60% and 37% respectively. The findings showed uncontrolled urban sprawling along major roads and forest loss as deforestation outside protected areas and degradation in protected forest. The monitoring of urbanization and other LULCC is important for local, and national governments and other bodies charged with the implementation of programs and policies that manage and utilize natural resources. Development adapts to mitigate the effect on the environment.