期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
基于MODWPT平方包络峭度谱的轴承声信号故障诊断方法
1
作者 李方烜 《铁道机车车辆》 北大核心 2024年第1期16-23,共8页
针对噪声干扰条件下的轴承声信号故障诊断问题,可以通过基于最大重叠离散小波包变换(MODWPT)的平方包络峭度谱法对轴承进行故障诊断。该方法首先对原始非平稳信号用MODWPT分解为若干个子频带分量之和,再对各子频带分量做平方包络峭度谱... 针对噪声干扰条件下的轴承声信号故障诊断问题,可以通过基于最大重叠离散小波包变换(MODWPT)的平方包络峭度谱法对轴承进行故障诊断。该方法首先对原始非平稳信号用MODWPT分解为若干个子频带分量之和,再对各子频带分量做平方包络峭度谱,快速定位原始非平稳信号当中冲击成分显著的频带范围,最后对目标频带做带通滤波并进行包络解调可得到故障诊断结果。通过实测轴承声信号数据验证,该方法可以有效地对轴承进行故障诊断。 展开更多
关键词 轴承 非平稳信号 最大重叠离散小波包变换 平方包络 峭度谱 故障诊断
下载PDF
基于单通道ECG信号与INFO-ABCLogitBoost模型的睡眠分期
2
作者 朱炳洋 吴建锋 +2 位作者 王柯 王章权 刘半藤 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第12期2547-2555,2585,共10页
为了减少对传统多导睡眠图(PSG)系统的依赖,基于单通道心电图(ECG)信号,设计了一种简单高效的睡眠分析算法.采用最大重叠离散小波变换(MODWT)对原始信号进行多分辨分析,再进一步提取峰值信息;根据峰值位置的一阶偏差,提取多维度的心率... 为了减少对传统多导睡眠图(PSG)系统的依赖,基于单通道心电图(ECG)信号,设计了一种简单高效的睡眠分析算法.采用最大重叠离散小波变换(MODWT)对原始信号进行多分辨分析,再进一步提取峰值信息;根据峰值位置的一阶偏差,提取多维度的心率变异性(HRV)特征.为了进一步筛选与不同睡眠阶段具有强关联性的HRV特征,提出基于ReliefF算法与Gini指数的特征提取方法.在此基础上,采用INFO-ABCLogitBoost方法挖掘HRV与不同睡眠阶段之间的关联性,从而实现睡眠阶段的精细分类.在实际公开数据集上的实验结果表明,所提出的模型在睡眠分期任务中,总体精度为83.67%,准确率为82.59%,Kappa系数为77.94%,F1-Score为82.97%.相比于睡眠分期任务中的常规模型,所提方法展现出更加高效便捷的睡眠质量评估性能,有助于实现家庭或移动医疗场景下的睡眠监测. 展开更多
关键词 睡眠分析 心电图(ECG) 最大重叠离散小波变换(MODWT) 心率变异性(HRV) INFO-ABCLogitBoost
下载PDF
基于MODWPT的Hilbert谱及其在齿轮故障诊断中的应用 被引量:4
3
作者 程军圣 杨宇 于德介 《振动与冲击》 EI CSCD 北大核心 2007年第11期41-44,共4页
在对基于最大重叠离散小波包变换(Maximal overlap discrete wavelet packet transform,简称MODWPT)的Hilbert谱方法进行介绍的基础上,将基于MODWPT的Hilbert谱应用于齿轮故障诊断当中。采用MOWDWPT可将多分量的复杂信号分解为若干个瞬... 在对基于最大重叠离散小波包变换(Maximal overlap discrete wavelet packet transform,简称MODWPT)的Hilbert谱方法进行介绍的基础上,将基于MODWPT的Hilbert谱应用于齿轮故障诊断当中。采用MOWDWPT可将多分量的复杂信号分解为若干个瞬时频率和瞬时幅值具有经典物理意义的单分量之和,然后求出各个单分量信号的瞬时频率和瞬时幅值,再进行组合便可以得到原始复杂信号完整的时频分布。对具有裂纹和断齿的齿轮故障振动信号的分析结果表明,基于MODWPT的Hilbert谱可以有效地提取齿轮振动信号的故障特征。 展开更多
关键词 最大重叠离散小波包变换 Hilbert谱 齿轮 故障诊断
下载PDF
基于MODWPT的包络阶次谱在滚动轴承故障诊断中的应用 被引量:1
4
作者 杨宇 杨丽湘 程军圣 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2010年第10期1380-1385,共6页
为了有效提取滚动轴承的故障特征,提出了基于MODWPT的包络阶次谱故障诊断方法.采用MODWPT将多分量的滚动轴承振动信号分解为若干个分量,对各个分量信号进行包络分析并对包络信号进行角域重采样;最后对重采样后的信号进行频谱分析,得到... 为了有效提取滚动轴承的故障特征,提出了基于MODWPT的包络阶次谱故障诊断方法.采用MODWPT将多分量的滚动轴承振动信号分解为若干个分量,对各个分量信号进行包络分析并对包络信号进行角域重采样;最后对重采样后的信号进行频谱分析,得到包络阶次谱,从而判断滚动轴承的工作状态和故障类型.采用该方法分别对仿真信号和实验信号进行了分析,结果表明了该方法的有效性. 展开更多
关键词 最大重叠离散小波包变换 阶次 包络谱 滚动轴承 故障诊断
下载PDF
基于多数据源融合的电网故障判别与告警技术研究
5
作者 朱轶伦 俞一峰 +3 位作者 虞明智 杜晟炜 姚高 许杰 《电气自动化》 2024年第2期32-35,39,共5页
针对国家电网故障判别误差率较高的问题,设计一种基于多数据源融合的电网故障判别与告警方案。利用最大离散小波变换技术和长短期记忆网络算法结合的方法提高电网故障判别与告警能力;利用最大重叠离散小波变换技术具有的扩充冗余自成正... 针对国家电网故障判别误差率较高的问题,设计一种基于多数据源融合的电网故障判别与告警方案。利用最大离散小波变换技术和长短期记忆网络算法结合的方法提高电网故障判别与告警能力;利用最大重叠离散小波变换技术具有的扩充冗余自成正交特性对故障类型进行划分;将长短期记忆网络算法由单向进程转为双向网络,避免了反馈传输过程中的网络层无法得到合适的偏导数等梯度消失情况。试验结果表明,通过所提算法进行数据质量核查的准确度高达九成以上,表明所提研究系统对解决提升故障判别准确度的提升具有较强的实用性、优越性。 展开更多
关键词 故障判别 最大重叠离散小波变换技术 长短期记忆网络算法 类型划分 双向网络
下载PDF
结合小波变换与数学形态学的电缆局放信号识别与降噪方法 被引量:1
6
作者 杨翠茹 彭向阳 余欣 《沈阳工业大学学报》 CAS 北大核心 2023年第6期619-624,共6页
针对大部分电缆局放(PD)信号识别方法在噪声影响下的识别准确率低、波形失真等问题,提出了一种基于小波变换与数学形态学的电缆PD信号识别及降噪方法。该方法利用最大重叠离散小波变换提取PD信号的高频和低频特征,结合重构和数学形态法... 针对大部分电缆局放(PD)信号识别方法在噪声影响下的识别准确率低、波形失真等问题,提出了一种基于小波变换与数学形态学的电缆PD信号识别及降噪方法。该方法利用最大重叠离散小波变换提取PD信号的高频和低频特征,结合重构和数学形态法滤除噪声。利用自适应神经网络学习小波变换后的特征,最终完成PD信号的识别分类。基于某变电站实测PD信号波形对所提方法进行实验分析结果表明,信号降噪处理后的信噪比与均方误差分别为5.439 dB、0.251,且整体的识别准确率超过了88%,均优于其他对比方法,具有良好的应用前景。 展开更多
关键词 电缆局放信号 信号识别 信号降噪 最大重叠离散小波变换 数学形态学 自适应神经网络 白噪声 脉冲噪声
下载PDF
煤矿直流微电网设备线损故障测试方法
7
作者 李瑞龙 《通信电源技术》 2023年第21期94-96,100,共4页
针对现有矿山直流微电网设备线损测试故障识别准确率和分类准确率较低等问题,提出一种煤矿直流微电网设备线损故障测试方法。采用最大重叠离散小波变换(Maximal Overlap Discrete Wavelet Transform,MODWT)法提取煤矿直流微电网设备线... 针对现有矿山直流微电网设备线损测试故障识别准确率和分类准确率较低等问题,提出一种煤矿直流微电网设备线损故障测试方法。采用最大重叠离散小波变换(Maximal Overlap Discrete Wavelet Transform,MODWT)法提取煤矿直流微电网设备线损故障特征,并联合反向传播神经网络(Back Propagation Neural Network,BPNN)和自适应遗传算法(Adaptive Genetic Algorithm,AGA)构建GA-BP神经网络,提高BPNN的全局寻优能力。对训练后的GA-BP神经网络模型进行优化,以测试煤矿直流微电网设备线损故障情况。实验结果表明,所提方法的故障识别准确率和分类准确率较高。 展开更多
关键词 煤矿直流微电网 线损故障测试 最大重叠离散小波变换(MODWT) 反向传播神经网络(BPNN) 自适应遗传算法(AGA)
下载PDF
基于广义解调时频分析的多分量信号分解方法 被引量:15
8
作者 程军圣 杨宇 于德介 《振动工程学报》 EI CSCD 北大核心 2007年第6期563-569,共7页
广义解调时频分析方法是一种新的信号处理方法,该方法将广义解调和最大重叠离散小波包变换相结合对复杂信号进行分解,得到若干个瞬时频率和瞬时幅值都具有物理意义的单分量信号,从而获得原始信号完整的时频分布。本文在介绍广义解调时... 广义解调时频分析方法是一种新的信号处理方法,该方法将广义解调和最大重叠离散小波包变换相结合对复杂信号进行分解,得到若干个瞬时频率和瞬时幅值都具有物理意义的单分量信号,从而获得原始信号完整的时频分布。本文在介绍广义解调时频分析方法的基础上,将该方法用于多分量信号的分析,对该方法进行了改进,给出了由改进的广义解调时频分析方法分解多分量信号的具体步骤,从而由改进后的广义解调时频分析方法不仅可以得到原始信号中各个分量的时域波形,而且还可以得到相同的时频分布。采用改进后的广义解调时频分析方法对仿真信号进行了分析,同时和其它时频分析方法进行了比较,结果表明了该方法的有效性。最后,对广义解调时频分析方法中的相位函数选择问题进行了讨论。 展开更多
关键词 广义解调 时频分析 最大重叠离散小波包变换 多分量信号 分解
下载PDF
基于改进阈值函数的小波去噪算法研究 被引量:15
9
作者 代海波 单锐 +1 位作者 王换鹏 张雁 《噪声与振动控制》 CSCD 2012年第6期189-193,共5页
针对用小波变换进行信号去噪的阈值函数设定问题,在传统软、硬阈值函数去噪的基础上,提出一种改进的阈值函数方法,并与极大重叠离散小波包变换相结合,从而得到一种改进阈值函数的小波去噪方法。Matlab仿真结果表明:去噪方法提高了重构... 针对用小波变换进行信号去噪的阈值函数设定问题,在传统软、硬阈值函数去噪的基础上,提出一种改进的阈值函数方法,并与极大重叠离散小波包变换相结合,从而得到一种改进阈值函数的小波去噪方法。Matlab仿真结果表明:去噪方法提高了重构信号的信噪比,有效除去噪声,且保留原始信号的细节特征,是一种较好的信号消噪方法,在股票去噪中具有较高的实用价值。 展开更多
关键词 声学 改进阈值函数 极大重叠离散小波包变换 小波去噪 噪声滤波
下载PDF
用最大重叠离散小波包变换的Hilbert谱时频分析 被引量:5
10
作者 杨宇 何怡刚 +1 位作者 程军圣 于德介 《振动.测试与诊断》 EI CSCD 北大核心 2009年第1期10-13,共4页
在介绍基于最大重叠离散小波包变换(Maximal Overlap Discrete Wavelet Packet Transform,简称MODWPT)的Hilbert谱方法的基础上,将基于MODWPT的Hilbert谱应用于非平稳信号的分析。采用MODWPT可将多分量的复杂信号分解为若干个瞬时频率... 在介绍基于最大重叠离散小波包变换(Maximal Overlap Discrete Wavelet Packet Transform,简称MODWPT)的Hilbert谱方法的基础上,将基于MODWPT的Hilbert谱应用于非平稳信号的分析。采用MODWPT可将多分量的复杂信号分解为若干个瞬时频率和瞬时幅值都具有经典物理意义的分量之和,求出各个单分量信号的瞬时频率和瞬时幅值,再进行组合得到原始复杂信号完整的时频分布。对基于MODWPT和基于经验模态分解(Empirical Mode Decomposition,简称EMD)的Hilbert谱,在不同类型非平稳信号下的时频分析效果进行了比较和分析,结果表明了基于MODWPT的Hilbert谱分析方法的有效性。 展开更多
关键词 非平稳信号 最大重叠离散小波包变换 Hilbert谱 时频分析
下载PDF
广义解调时频分析方法在调制信号处理中的应用 被引量:3
11
作者 杨宇 程军圣 +1 位作者 于德介 何怡刚 《振动与冲击》 EI CSCD 北大核心 2007年第8期13-16,共4页
介绍了一种新的信号处理方法-基于广义解调的时频分析方法,并将这种方法应用于调制信号的处理。广义解调时频分析方法采用广义解调将时频分布是曲线的信号变换为时频分布是平行于时间坐标轴的直线的信号,然后采用最大重叠离散小波包变换... 介绍了一种新的信号处理方法-基于广义解调的时频分析方法,并将这种方法应用于调制信号的处理。广义解调时频分析方法采用广义解调将时频分布是曲线的信号变换为时频分布是平行于时间坐标轴的直线的信号,然后采用最大重叠离散小波包变换(Maximal overlap discrete wavelet packet transform,简称MODWPT)对广义解调后的信号进行分解,得到若干个瞬时频率和瞬时幅值都具有物理意义的单分量信号,再对各个单分量信号进行逆广义解调,进一步求出瞬时频率和瞬时幅值,从而得到原始信号完整的时频分布。采用广义解调时频分析方法对调幅-调频信号进行了分析,结果表明该方法能有效地提取调幅-调频信号的调制信息。 展开更多
关键词 广义解调 时频分析 最大重叠离散小波包变换 调制信号
下载PDF
基于变分模态分解和最大重叠离散小波包变换的齿轮信号去噪方法 被引量:22
12
作者 周小龙 徐鑫莉 +3 位作者 王尧 刘薇娜 姜振海 马风雷 《振动与冲击》 EI CSCD 北大核心 2021年第12期265-274,289,共11页
针对齿轮故障信号易受噪声干扰导致故障特征难以提取的问题,提出一种基于变分模态分解(variational mode decomposition,VMD)和最大重叠离散小波包变换(maximal overlap discrete wavelet packet transform,MODWPT)相结合的信号去噪方... 针对齿轮故障信号易受噪声干扰导致故障特征难以提取的问题,提出一种基于变分模态分解(variational mode decomposition,VMD)和最大重叠离散小波包变换(maximal overlap discrete wavelet packet transform,MODWPT)相结合的信号去噪方法。采用VMD方法将齿轮振动信号分解成一系列不同中心频率的固有模态函数(intrinsic mode function,IMF),对VMD分解过程中影响其精度的主要参数选择方法进行了探究,提出相关参数的选取依据。结合能量熵增量-频域互相关系数准则以剔除分解出的高频噪声和虚假干扰成分;采用MODWPT方法对包含高频噪声的IMF分量进行去噪,以进一步提升信号的去噪效果和性能指标;最后将去噪后高频IMF分量同表征信号自身特征的敏感模态分量重构为去噪信号。通过仿真信号和齿轮断齿故障信号的分析,证明了所提方法的有效性和实用性。 展开更多
关键词 变分模态分解 最大重叠离散小波包变换 去噪 齿轮 特征提取
下载PDF
基于并行隐马尔科夫模型的电能质量扰动事件分类 被引量:17
13
作者 谢善益 肖斐 +1 位作者 艾芊 周刚 《电力系统保护与控制》 EI CSCD 北大核心 2019年第2期80-86,共7页
为满足电能质量扰动准确分类的需求,提出了一种基于极大重叠离散小波变换(MaximalOverlapDiscrete WaveletTransform, MODWT)和并行隐马尔科夫模型(ParallelHiddenMarkovModel, PHMM)的电能质量扰动分类方法。首先利用MODWT提出一种实... 为满足电能质量扰动准确分类的需求,提出了一种基于极大重叠离散小波变换(MaximalOverlapDiscrete WaveletTransform, MODWT)和并行隐马尔科夫模型(ParallelHiddenMarkovModel, PHMM)的电能质量扰动分类方法。首先利用MODWT提出一种实用的电能质量扰动检测算法,该算法无需设定检测阈值,可准确获取扰动时段的起止时刻。接着提取扰动时段的电压谐波成分并组成特征向量。然后用PHMM分类器对扰动信号进行分类识别。PHMM方法克服了人工神经网络方法收敛性较差、训练时间较长的缺陷,使分类器性能大大提升。通过应用于现场实测扰动数据表明,所提出的方法适用于多种类型的电能质量扰动检测,分类正确率高,训练速度快,具有良好的应用价值。 展开更多
关键词 电能质量 极大重叠离散小波变换 并行隐马尔科夫模型 分类识别
下载PDF
基于MODWPT和MCKD的滚动轴承早期故障诊断 被引量:6
14
作者 刘奇 张富华 +1 位作者 田辈辈 冷军发 《机械设计与研究》 CSCD 北大核心 2023年第1期102-106,117,共6页
针对齿轮啮合强振动干扰下滚动轴承微弱故障特征提取难的问题,提出一种最大重叠离散小波包变换(MODWPT)和最大相关峭度解卷积(MCKD)相结合的滚动轴承早期故障诊断方法。首先采用MODWPT方法将复杂的轴承故障振动信号分解为若干分量,然后... 针对齿轮啮合强振动干扰下滚动轴承微弱故障特征提取难的问题,提出一种最大重叠离散小波包变换(MODWPT)和最大相关峭度解卷积(MCKD)相结合的滚动轴承早期故障诊断方法。首先采用MODWPT方法将复杂的轴承故障振动信号分解为若干分量,然后依据峭度准则,选取峭度较大的分量进行MCKD滤波,最后对滤波后所得信号做Hilbert包络分析,将包络谱呈现的频率特征与理论故障特征频率相比较,识别故障特征,实现故障诊断。通过轴承故障的仿真及实验研究,并对比单一MCKD方法和EMD-MED方法的提取效果,说明该方法可以在一定程度上抑制齿轮啮合强振动及噪声的干扰,增强并有效提取出滚动轴承早期低频微弱故障特征。 展开更多
关键词 滚动轴承 故障诊断 最大重叠离散小波包变换(modwpt) 最大相关峭度解卷积(MCKD)
原文传递
基于MODWT和ANN的微电网故障诊断 被引量:7
15
作者 杨茁蓬 高彦杰 《电力电子技术》 CSCD 北大核心 2022年第2期19-22,共4页
近年来,微电网的故障诊断研究变得越来越重要,因为它可以确保微电网安全稳定运行。基于此背景提出了一种基于极大重叠离散小波变换(MODWT)和人工神经网络(ANN)的微电网故障诊断方法。首先利用MODWT对采集到的电流信号进行故障检测,判断... 近年来,微电网的故障诊断研究变得越来越重要,因为它可以确保微电网安全稳定运行。基于此背景提出了一种基于极大重叠离散小波变换(MODWT)和人工神经网络(ANN)的微电网故障诊断方法。首先利用MODWT对采集到的电流信号进行故障检测,判断是否发生故障;再利用MODWT对故障电流进行特征提取,得到相应的特征向量;随后使用ANN得到故障分类结果。结果表明,该方法可以准确的检测到故障发生时刻。此外,和其他几种智能故障分类方法相比,具有更好的故障分类精度。 展开更多
关键词 微电网 故障诊断 极大重叠离散小波变换
下载PDF
基于MODWT和BP神经网络的微电网故障诊断方法 被引量:3
16
作者 陈佳慧 高彦杰 靳一玮 《上海电力大学学报》 CAS 2021年第1期57-60,77,共5页
近年来,随着微电网技术的持续发展,电力用户对其供电可靠性的要求也不断提高,因此微电网故障诊断研究也变得越来越重要。提出了一种基于极大重叠离散小波变换(MODWT)和反向传播(BP)神经网络的微电网故障诊断新方法,并通过仿真与算例进... 近年来,随着微电网技术的持续发展,电力用户对其供电可靠性的要求也不断提高,因此微电网故障诊断研究也变得越来越重要。提出了一种基于极大重叠离散小波变换(MODWT)和反向传播(BP)神经网络的微电网故障诊断新方法,并通过仿真与算例进行了验证。结果表明:该方法能快速、准确地识别出故障类型,且不受故障初始相位角和过渡电阻等因素的影响;与现有的基于离散小波变换和反向传播神经网络的诊断方法相比,所提出的方法可以提供更好的故障分类精度。 展开更多
关键词 微电网 极大重叠离散小波变换 反向传播神经网络 故障诊断
下载PDF
基于MODWT和LSTM网络的分布式电网故障诊断 被引量:1
17
作者 陈佳慧 靳一玮 《科技创新与应用》 2021年第3期23-26,共4页
近年来,针对分布式电网故障诊断的研究变得越来越重要,因为它能确保电网安全而稳定地运行。传统的故障诊断方法在故障分类的准确率上仍有待提高,对此,提出了一种基于极大重叠离散小波变换和长短期记忆网络的分布式电网故障诊断方法。首... 近年来,针对分布式电网故障诊断的研究变得越来越重要,因为它能确保电网安全而稳定地运行。传统的故障诊断方法在故障分类的准确率上仍有待提高,对此,提出了一种基于极大重叠离散小波变换和长短期记忆网络的分布式电网故障诊断方法。首先采集故障数据,再进行特征提取和网络训练,最后得到故障分类的结果。结果表明,该方法不但能准确地识别出故障类型,且不受故障发生时刻和过渡电阻等影响。另外,与其他几种智能诊断方法相比,所提出的方法可以提供更好的故障分类精度。为了评价该方法的性能,以修正的IEEE13总线标准系统为例进行了验证。 展开更多
关键词 故障诊断 IEEE13总线 极大重叠离散小波变换 长短期记忆网络
下载PDF
基于MODWPT和Choi-Williams分布的齿轮箱低频故障特征提取 被引量:10
18
作者 刘奇 荆双喜 +1 位作者 冷军发 罗晨旭 《机械设计与研究》 CSCD 北大核心 2020年第5期96-100,共5页
针对齿轮箱多级齿轮传动振动信号易受噪声干扰,低频微弱故障特征提取难的问题,提出一种最大重叠离散小波包变换(MODWPT)和Choi-Williams分布(CWD)相结合的齿轮低频故障诊断方法。首先采用MODWPT方法将复杂的振动信号分解为若干分量,避... 针对齿轮箱多级齿轮传动振动信号易受噪声干扰,低频微弱故障特征提取难的问题,提出一种最大重叠离散小波包变换(MODWPT)和Choi-Williams分布(CWD)相结合的齿轮低频故障诊断方法。首先采用MODWPT方法将复杂的振动信号分解为若干分量,避免了经验模态分解(EMD)存在的模态混叠和端点效应等问题,然后依据峭度准则筛选合适分量,最后将选取的分量进行CWD分析,将时频谱表现出的频率特征与理论故障特征频率对比,识别出齿轮故障特征,实现故障诊断。通过齿轮故障的仿真及实验研究,说明了该方法较传统EMD-WVD方法的优越性,同时验证了该方法的有效性和可行性。 展开更多
关键词 齿轮 低频故障特征提取 最大重叠离散小波包变换(modwpt) Choi-Williams分布(CWD)
原文传递
基于负荷数据频域特征和LSTM网络的类别不平衡负荷典型用电模式提取方法 被引量:18
19
作者 唐子卓 刘洋 +1 位作者 许立雄 郭久亿 《电力建设》 北大核心 2020年第8期17-24,共8页
现有用户用电模式提取技术主要基于负荷数据时域特征提取,无法准确分辨时域上欧式距离接近但频域上波动特性差异较大的负荷数据,且对类别不平衡负荷数据的分类准确率较低。为解决上述问题,文章首先通过基于样本支持向量的过采样方法(sup... 现有用户用电模式提取技术主要基于负荷数据时域特征提取,无法准确分辨时域上欧式距离接近但频域上波动特性差异较大的负荷数据,且对类别不平衡负荷数据的分类准确率较低。为解决上述问题,文章首先通过基于样本支持向量的过采样方法(support vector machines-synthetic minority over-sampling technique,SVM-SMOTE)对存在类别不平衡问题的负荷数据进行处理;然后,通过极大重叠离散小波变换(maximal overlap discrete wavelet transform,MODWT)对负荷数据进行分解,并将分解后的尺度系数和细节系数组成频域的特征矩阵;最后将频域特征矩阵输入深度长短期记忆(long short-term memory,LSTM)神经网络进行负荷分类并通过求取各个类别质心来获取典型用电模式。实验结果表明,该方法具有良好的类别不平衡数据处理能力和负荷分类效果。 展开更多
关键词 深度学习 类别不平衡 极大重叠离散小波变换(MODWT) 负荷分类 长短期记忆神经网络(LSTM)
原文传递
基于深度置信网络的电能质量扰动事件分类 被引量:9
20
作者 王玥 肖斐 +2 位作者 艾芊 张宇帆 李昭昱 《供用电》 2019年第1期40-45,53,共7页
为满足电能质量扰动准确分类的需求,提出了一种基于极大重叠离散小波变换(MODWT)和深度置信网络(DBN)的电能质量扰动分类方法。首先利用MODWT提出一种可靠的电能质量暂态事件检测算法,该算法无需设定检测阈值,可准确获取暂态事件的起止... 为满足电能质量扰动准确分类的需求,提出了一种基于极大重叠离散小波变换(MODWT)和深度置信网络(DBN)的电能质量扰动分类方法。首先利用MODWT提出一种可靠的电能质量暂态事件检测算法,该算法无需设定检测阈值,可准确获取暂态事件的起止时刻。接着提取暂态事件的电压谐波成分并组成特征向量。然后用DBN分类器对扰动信号进行分类识别,DBN方法比常用的分类方法具有更高的分类准确率和更短的训练时间。通过应用于现场实测扰动数据表明:所提出的方法适用于多种类型的电能质量扰动检测,在少样本情况下具有优越的分类性能。 展开更多
关键词 电能质量 极大重叠离散小波变换 深度置信网络 分类识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部