期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Manifold Structure Analysis of Tactical Network Traffic Matrix Based on Maximum Variance Unfolding Algorithm
1
作者 Hao Shi Guofeng Wang +2 位作者 Rouxi Wang Jinshan Yang Kaishuan Shang 《Journal of Electronic Research and Application》 2023年第6期42-49,共8页
As modern weapons and equipment undergo increasing levels of informatization,intelligence,and networking,the topology and traffic characteristics of battlefield data networks built with tactical data links are becomin... As modern weapons and equipment undergo increasing levels of informatization,intelligence,and networking,the topology and traffic characteristics of battlefield data networks built with tactical data links are becoming progressively complex.In this paper,we employ a traffic matrix to model the tactical data link network.We propose a method that utilizes the Maximum Variance Unfolding(MVU)algorithm to conduct nonlinear dimensionality reduction analysis on high-dimensional open network traffic matrix datasets.This approach introduces novel ideas and methods for future applications,including traffic prediction and anomaly analysis in real battlefield network environments. 展开更多
关键词 Manifold learning maximum variance Unfolding(MVU)algorithm Nonlinear dimensionality reduction
下载PDF
An Improved Double-Threshold Method Based on Gradient Histogram 被引量:2
2
作者 YANGShen CHENShu-zhen ZHANGBing 《Wuhan University Journal of Natural Sciences》 CAS 2004年第4期473-476,共4页
This paper analyzes the characteristics of the output gradient histogram and shortages of several traditional automatic threshold methods in order to segment the gradient image better. Then an improved double-threshol... This paper analyzes the characteristics of the output gradient histogram and shortages of several traditional automatic threshold methods in order to segment the gradient image better. Then an improved double-threshold method is proposed, which is combined with the method of maximum classes variance, estimating-area method and double-threshold method. This method can automatically select two different thresholds to segment gradient images. The computer simulation is performed on the traditional methods and this algorithm and proves that this method can get satisfying result. Key words gradient histogram image - threshold selection - double-threshold method - maximum classes variance method CLC number TP 391. 41 Foundation item: Supported by the National Nature Science Foundation of China (50099620) and the Project of Chenguang Plan in Wuhan (985003062)Biography: YANG Shen (1977-), female, Ph. D. candidate, research direction: multimedia information processing and network technology. 展开更多
关键词 gradient histogram image threshold selection double-threshold method maximum classes variance method
下载PDF
Research on Concrete Beam Crack Recognition Algorithm Based on Block Threshold Value Image Processing
3
作者 Wenting Qiao Xiaoguang Wu +1 位作者 Wen Sun Qiande Wu 《Structural Durability & Health Monitoring》 EI 2020年第4期355-374,共20页
To solve the problem that the digital image recognition accuracy of concrete structure cracks is not high under the condition of uneven ill umination and complex surface color of concrete structure,this paper has prop... To solve the problem that the digital image recognition accuracy of concrete structure cracks is not high under the condition of uneven ill umination and complex surface color of concrete structure,this paper has proposed a block segmentation method of maximum entropy threshold based on the digital image data obtained by the ACTIS automatic detection system.The steps in this research are as follows:1.The crack digital images of concrete specimens with typical fea-tures were collected by using the Actis system of KURABO Co,Ltd,of Japan in the concrete beam bending test.2.The images are segmented into blocks to dis-tinguish backgrounds of different grayscale.3.The max imum interclass average gray difference method is used to distinguish the sub-blocks and screen out the image blocks that need to be segmented.4.Segmentation is made to the image with 2D max imum entropy threshold segmentation method to obtain the binary image,and the target image can be obtained by screening the connected domain features of the binary image.Results have shown that compared with other algo-rithms,the proposed method can effectively decrease the image over-segmentation and under segmentation rates,highlight the characteristics of the target cracks,solve the problems of excessive difference between the identified length and actual length of cracks caused by background gray level change and uneven ilumnination,and effectively improve the recognition accuracy of bridge concrete cracks. 展开更多
关键词 Concrete crack block segmentation maximum entropy segmentation algorithms maximum interclass variance(Otsu)method
下载PDF
Application of Fengyun-4 Satellite to Flood Disaster Monitoring through a Rapid Multi-Temporal Synthesis Approach 被引量:9
4
作者 Jiali SHAO Hao GAO +1 位作者 Xin WANG Qianqian ZHANG 《Journal of Meteorological Research》 SCIE CSCD 2020年第4期720-731,共12页
Fengyun-4 A(FY-4 A) belongs to the second generation of geostationary meteorological satellite series in China. Its observations with high frequency and resolution provide a better data basis for monitoring of extreme... Fengyun-4 A(FY-4 A) belongs to the second generation of geostationary meteorological satellite series in China. Its observations with high frequency and resolution provide a better data basis for monitoring of extreme weather such as sudden flood disasters. In this study, the flood disasters occurred in Bangladesh, India, and some other areas of South Asia in August 2018 were investigated by using a rapid multi-temporal synthesis approach for the first time for removal of thick clouds in FY-4 A images. The maximum between-class variance algorithm(OTSU;developed by Otsu in 2007) and linear spectral unmixing methods are used to extract the water area of flood disasters. The accuracy verification shows that the water area of flood disasters extracted from FY-4 A is highly correlated with that from the high-resolution satellite datasets Gaofen-1(GF-1) and Sentinel-1 A, with the square correlation coefficient R2 reaching 0.9966. The average extraction accuracy of FY-4 A is over 90%. With the rapid multi-temporal synthesis approach used in flood disaster monitoring with FY-4 A satellite data, advantages of the wide coverage, fast acquisition,and strong timeliness with geostationary meteorological satellites are effectively combined. Through the synthesis of multi-temporal images of the flood water body, the influence of clouds is effectively eliminated, which is of great significance for the real-time flood monitoring. This also provides an important service guarantee for the disaster prevention and reduction as well as economic and social development in China and the Asia-Pacific region. 展开更多
关键词 flood disaster monitoring maximum between-class variance algorithm(OTSU) Fengyun-4A(FY-4A) MULTI-TEMPORAL rapid synthesis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部