On the basis of experimental observations on animals, applications to clinical data on patients and theoretical statistical reasoning, the author developed a com-puter-assisted general mathematical model of the ‘prob...On the basis of experimental observations on animals, applications to clinical data on patients and theoretical statistical reasoning, the author developed a com-puter-assisted general mathematical model of the ‘probacent’-probability equation, Equation (1) and death rate (mortality probability) equation, Equation (2) derivable from Equation (1) that may be applica-ble as a general approximation method to make use-ful predictions of probable outcomes in a variety of biomedical phenomena [1-4]. Equations (1) and (2) contain a constant, γ and c, respectively. In the pre-vious studies, the author used the least maximum- difference principle to determine these constants that were expected to best fit reported data, minimizing the deviation. In this study, the author uses the method of computer-assisted least sum of squares to determine the constants, γ and c in constructing the ‘probacent’-related formulas best fitting the NCHS- reported data on survival probabilities and death rates in the US total adult population for 2001. The results of this study reveal that the method of com-puter-assisted mathematical analysis with the least sum of squares seems to be simple, more accurate, convenient and preferable than the previously used least maximum-difference principle, and better fit-ting the NCHS-reported data on survival probabili-ties and death rates in the US total adult population. The computer program of curved regression for the ‘probacent’-probability and death rate equations may be helpful in research in biomedicine.展开更多
文摘On the basis of experimental observations on animals, applications to clinical data on patients and theoretical statistical reasoning, the author developed a com-puter-assisted general mathematical model of the ‘probacent’-probability equation, Equation (1) and death rate (mortality probability) equation, Equation (2) derivable from Equation (1) that may be applica-ble as a general approximation method to make use-ful predictions of probable outcomes in a variety of biomedical phenomena [1-4]. Equations (1) and (2) contain a constant, γ and c, respectively. In the pre-vious studies, the author used the least maximum- difference principle to determine these constants that were expected to best fit reported data, minimizing the deviation. In this study, the author uses the method of computer-assisted least sum of squares to determine the constants, γ and c in constructing the ‘probacent’-related formulas best fitting the NCHS- reported data on survival probabilities and death rates in the US total adult population for 2001. The results of this study reveal that the method of com-puter-assisted mathematical analysis with the least sum of squares seems to be simple, more accurate, convenient and preferable than the previously used least maximum-difference principle, and better fit-ting the NCHS-reported data on survival probabili-ties and death rates in the US total adult population. The computer program of curved regression for the ‘probacent’-probability and death rate equations may be helpful in research in biomedicine.