Some new reflection principles for Maxwell's equations are first established, which are then applied to derive two novel identifiability results in inverse electromagnetic obstacle scattering problems with polyhed...Some new reflection principles for Maxwell's equations are first established, which are then applied to derive two novel identifiability results in inverse electromagnetic obstacle scattering problems with polyhedral scatterers.展开更多
A unified complex model of Maxwell's equations is presented.The wave nature of the electromagnetic field vector is related to the temporal and spatial distributions and the circulation of charge and current densities...A unified complex model of Maxwell's equations is presented.The wave nature of the electromagnetic field vector is related to the temporal and spatial distributions and the circulation of charge and current densities.A new vacuum solution is obtained,and a new transformation under which Maxwell's equations are invariant is proposed.This transformation extends ordinary gauge transformation to include charge-current as well as scalar-vector potential.An electric dipole moment is found to be related to the magnetic charges,and Dirac's quantization is found to determine an uncertainty relation expressing the indeterminacy of electric and magnetic charges.We generalize Maxwell's equations to include longitudinal waves.A formal analogy between this formulation and Dirac's equation is also discussed.展开更多
The notion of the inner product of vectors is extended to tensors of different orders, which may replace the vector product usually. The essences of the differential and the codiffcrential forms are pointed out: they...The notion of the inner product of vectors is extended to tensors of different orders, which may replace the vector product usually. The essences of the differential and the codiffcrential forms are pointed out: they represent the tangent surface and the normal surface fluxes of a tensor, reslpetivcly. The definitions of the divergence and the curl of a 2D surface flux of a tensor arc obtained. Maxwell's equations, namely, the constraction law of field, which were usually established based on two conservation laws of electric charge and imaginary magnetic charge, are derived by the author only by using one conservation law ( mass or fluid flux quantity and so on) and the feature of central field (or its composition). By the feature of central field (or its composition), the curl of 2D flux is zero. Both universality of gauge field and the difficulty of magnetic monopole theory ( a magnetic monopole has no effect on electric current just like a couple hasing no effect on the sum of forces) axe presented: magnetic monopole has no the feature of magnet. Finally it is pointed out that the base of relation of mass and energy is already involved in Maxwell's equations.展开更多
The main aim of this paper is to provide convergence analysis of Quasi-Wilson nonconforming finite element to Maxwell's equations under arbitrary quadrilateral meshes.The error estimates are derived,which are the ...The main aim of this paper is to provide convergence analysis of Quasi-Wilson nonconforming finite element to Maxwell's equations under arbitrary quadrilateral meshes.The error estimates are derived,which are the same as those for conforming elements under conventional regular meshes.展开更多
This paper deals with quasilinear elliptic equations of singular growth like-Δu-uΔ(u^(2))=a(x)u^(-1).We establish the existence of positive solutions for general a(x)∈L^(p)(Ω),p>2,whereΩis a bounded domain inℝ...This paper deals with quasilinear elliptic equations of singular growth like-Δu-uΔ(u^(2))=a(x)u^(-1).We establish the existence of positive solutions for general a(x)∈L^(p)(Ω),p>2,whereΩis a bounded domain inℝ^(N)with N≥1.展开更多
In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with ...In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.展开更多
In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,t...In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.展开更多
Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of l...Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of loess-mudstone and the unique water sensitivity characteristics of mudstone.Hence,it is imperative to develop innovative mechanical models and mathematical equations specifically tailored to loess-mudstone landslides.In this study,we analyze the fracture mechanism of the loess-mudstone sliding zone using plastic fracture mechanics and develop a unique fracture yield model.To calculate the energy release rate during the expansion of the loess-mudstone interface tip region,the shear fracture energy G is applied,which reflects both the yield failure criterion and the fracture failure criterion.To better understand the instability mechanism of loess-mudstone landslides,equilibrium equations based on G are established for tractive,compressive,and tensile loess-mudstone landslides.Based on the equilibrium equation,the critical length Lc of the sliding zone can be used for the safety evaluation of loess-mudstone landslides.In this way,this study proposes a new method for determining the failure mechanism and equilibrium equation of loessmudstone landslides,which resolves their starting mechanism,mechanical equilibrium equations,and safety evaluation indicators,thus justifying the scientific significance and practical value of this research.展开更多
We review time-domain formulations of radiation boundary conditions for Maxwell's equations, focusing on methods which can deliver arbitrary accuracy at acceptable compu-tational cost. Examples include fast evaluatio...We review time-domain formulations of radiation boundary conditions for Maxwell's equations, focusing on methods which can deliver arbitrary accuracy at acceptable compu-tational cost. Examples include fast evaluations of nonlocal conditions on symmetric and general boundaries, methods based on identifying and evaluating equivalent sources, and local approximations such as the perfectly matched layer and sequences of local boundary conditions. Complexity estimates are derived to assess work and storage requirements as a function of wavelength and simulation time.展开更多
In this paper, we consider the time dependent Maxwell's equations when dispersive media are involved. The Crank-Nicolson mixed finite element methods are developed for three most popular dispersive medium models: th...In this paper, we consider the time dependent Maxwell's equations when dispersive media are involved. The Crank-Nicolson mixed finite element methods are developed for three most popular dispersive medium models: the isotropic cold plasma, the one-pole Debye medium and the two-pole Lorentz medium. Optimal error estimates are proved for all three models solved by the Raviart-Thomas-Ndd@lec spaces. Extensions to multiple pole dispersive media are presented also.展开更多
In this paper, we obtain optimal error estimates in both L^2-norm and H(curl)-norm for the Nedelec edge finite element approximation of the time-harmonic Maxwell's equations on a general Lipschitz domain discretize...In this paper, we obtain optimal error estimates in both L^2-norm and H(curl)-norm for the Nedelec edge finite element approximation of the time-harmonic Maxwell's equations on a general Lipschitz domain discretized on quasi-uniform meshes. One key to our proof is to transform the L^2 error estimates into the L^2 estimate of a discrete divergence-free function which belongs to the edge finite element spaces, and then use the approximation of the discrete divergence-free function by the continuous divergence-free function and a duality argument for the continuous divergence-free function. For Nedelec's second type elements, we present an optimal convergence estimate which improves the best results available in the literature.展开更多
In this paper, we give the state of the art for the so called “mixed spectral elements” for Maxwell's equations. Several families of elements, such as edge elements and discon-tinuous Galerkin methods (DGM) are p...In this paper, we give the state of the art for the so called “mixed spectral elements” for Maxwell's equations. Several families of elements, such as edge elements and discon-tinuous Galerkin methods (DGM) are presented and discussed. In particular, we show the need of introducing some numerical dissipation terms to avoid spurious modes in these methods. Such terms are classical for DGM but their use for edge element methods is novel approach described in this paper. Finally, numerical experiments show the fast and low-cost character of these elements.展开更多
Abstract The main objective of this paper is to present a new rectangular nonconforming finite element scheme with the second order convergence behavior for approximation of Maxwell's equations. Then the correspondin...Abstract The main objective of this paper is to present a new rectangular nonconforming finite element scheme with the second order convergence behavior for approximation of Maxwell's equations. Then the corresponding optimal error estimates are derived. The difficulty in construction of this finite element scheme is how to choose a compatible pair of degrees of freedom and shape function space so as to make the consistency error due to the nonconformity of the element being of order O(h^3), properly one order higher than that of its interpolation error O(h^2) in the broken energy norm, where h is the subdivision parameter tending to zero.展开更多
The paper presents a new fast integral equation solver for Maxwell's equations in 3-D layered media. First, the spectral domain dyadic Green's function is derived, and the 0-th and the 1-st order Hankel transforms o...The paper presents a new fast integral equation solver for Maxwell's equations in 3-D layered media. First, the spectral domain dyadic Green's function is derived, and the 0-th and the 1-st order Hankel transforms or Sommerfeld-type integrals are used to recover all components of the dyadic Green's function in real space. The Hankel transforms are performed with the adaptive generalized Gaussian quadrature points and window functions to minimize the computational cost. Subsequently, a fast integral equation solver with O(N2zNxNy log(NzNy)) in layered media is developed by rewriting the layered media integral operator in terms of Hankel transforms and using the new fast multipole method for the n-th order Bessel function in 2-D. Computational cost and parallel efficiency of the new algorithm are presented.展开更多
Similarities and fundamental differences between Maxwell’s equations and nonlinear Schrodinger equation in predicting a soliton evolution in a uniform nonlinear anisotropic medium are analyzed.It is found that in som...Similarities and fundamental differences between Maxwell’s equations and nonlinear Schrodinger equation in predicting a soliton evolution in a uniform nonlinear anisotropic medium are analyzed.It is found that in some cases,the soliton solutions to the nonlinear Schrodinger equation cannot be recovered from Maxwell’s equations while in others the soliton solutions to Maxwell’s equations are lost from the nonlinear Schrodinger equation through approximation,although there are cases where the soliton solutions to the two sets of the equations demonstrate only quantitative difference.The origin of the differences is also discussed.展开更多
The authors consider Maxwell's equations for an isomagnetic anisotropic and inhomogeneous medium in two dimensions, and discuss an inverse problem of determining the permittivity tensor (ε1,ε2,ε2,ε3 ) and the p...The authors consider Maxwell's equations for an isomagnetic anisotropic and inhomogeneous medium in two dimensions, and discuss an inverse problem of determining the permittivity tensor (ε1,ε2,ε2,ε3 ) and the permeability μ in the constitutive relations from a finite number of lateral boundary measurements. Applying a Carleman estimate, the authors prove an estimate of the Lipschitz type for stability, provided that ε1,ε2,ε3,μ satisfy some a priori conditions.展开更多
We investigate the low Mach number limit for the isentropic compressible NavierStokes equations with a revised Maxwell's law(with Galilean invariance) in R^(3). By applying the uniform estimates of the error syste...We investigate the low Mach number limit for the isentropic compressible NavierStokes equations with a revised Maxwell's law(with Galilean invariance) in R^(3). By applying the uniform estimates of the error system, it is proven that the solutions of the isentropic Navier-Stokes equations with a revised Maxwell's law converge to that of the incompressible Navier-Stokes equations as the Mach number tends to zero. Moreover, the convergence rates are also obtained.展开更多
This paper is concerned with the optimal error estimates and energy conservation properties of the alternating direction implicit finite-difference time-domain (ADI-FDTD) method which is a popular scheme for solving...This paper is concerned with the optimal error estimates and energy conservation properties of the alternating direction implicit finite-difference time-domain (ADI-FDTD) method which is a popular scheme for solving the 3D Maxwell's equations. Precisely, for the case with a perfectly electric conducting (PEC) boundary condition we establish the optimal second-order error estimates in both space and time in the discrete Hi-norm for the ADI-FDTD scheme, and prove the approximate divergence preserving property that if the divergence of the initial electric and magnetic fields are zero, then the discrete L2-norm of the discrete divergence of the ADI-FDTD solution is approximately zero with the second-order accuracy in both space and time. The key ingredient is two new discrete modified energy norms which are second-order in time perturbations of two new energy conservation laws for the Maxwell's equations introduced in this paper. ~rthermore, we prove that, in addition to two known discrete modified energy identities which are second-order in time perturbations of two known energy conservation laws, the ADI-FDTD scheme also satisfies two new discrete modified energy identities which are second-order in time perturbations of the two new energy conservation laws. This means that the ADI-FDTD scheme is unconditionally stable under the four discrete modified energy norms. Experimental results which confirm the theoretical results are presented.展开更多
This paper is a continuation of recent work by Guo-Xiang-Zheng[10].We deduce the sharp Morrey regularity theory for weak solutions to the fourth order nonhomogeneous Lamm-Rivière equation △^{2}u=△(V▽u)+div(w▽...This paper is a continuation of recent work by Guo-Xiang-Zheng[10].We deduce the sharp Morrey regularity theory for weak solutions to the fourth order nonhomogeneous Lamm-Rivière equation △^{2}u=△(V▽u)+div(w▽u)+(▽ω+F)·▽u+f in B^(4),under the smallest regularity assumptions of V,ω,ω,F,where f belongs to some Morrey spaces.This work was motivated by many geometrical problems such as the flow of biharmonic mappings.Our results deepens the Lp type regularity theory of[10],and generalizes the work of Du,Kang and Wang[4]on a second order problem to our fourth order problems.展开更多
In this paper,we study the a posteriori error estimator of SDG method for variable coefficients time-harmonic Maxwell's equations.We propose two a posteriori error estimators,one is the recovery-type estimator,and...In this paper,we study the a posteriori error estimator of SDG method for variable coefficients time-harmonic Maxwell's equations.We propose two a posteriori error estimators,one is the recovery-type estimator,and the other is the residual-type estimator.We first propose the curl-recovery method for the staggered discontinuous Galerkin method(SDGM),and based on the super-convergence result of the postprocessed solution,an asymptotically exact error estimator is constructed.The residual-type a posteriori error estimator is also proposed,and it's reliability and effectiveness are proved for variable coefficients time-harmonic Maxwell's equations.The efficiency and robustness of the proposed estimators is demonstrated by the numerical experiments.展开更多
基金supported by NSF grant,FRG DMS 0554571supported substantially by Hong Kong RGC grant (Project 404407)partially by Cheung Kong Scholars Programme through Wuhan University,China.
文摘Some new reflection principles for Maxwell's equations are first established, which are then applied to derive two novel identifiability results in inverse electromagnetic obstacle scattering problems with polyhedral scatterers.
文摘A unified complex model of Maxwell's equations is presented.The wave nature of the electromagnetic field vector is related to the temporal and spatial distributions and the circulation of charge and current densities.A new vacuum solution is obtained,and a new transformation under which Maxwell's equations are invariant is proposed.This transformation extends ordinary gauge transformation to include charge-current as well as scalar-vector potential.An electric dipole moment is found to be related to the magnetic charges,and Dirac's quantization is found to determine an uncertainty relation expressing the indeterminacy of electric and magnetic charges.We generalize Maxwell's equations to include longitudinal waves.A formal analogy between this formulation and Dirac's equation is also discussed.
文摘The notion of the inner product of vectors is extended to tensors of different orders, which may replace the vector product usually. The essences of the differential and the codiffcrential forms are pointed out: they represent the tangent surface and the normal surface fluxes of a tensor, reslpetivcly. The definitions of the divergence and the curl of a 2D surface flux of a tensor arc obtained. Maxwell's equations, namely, the constraction law of field, which were usually established based on two conservation laws of electric charge and imaginary magnetic charge, are derived by the author only by using one conservation law ( mass or fluid flux quantity and so on) and the feature of central field (or its composition). By the feature of central field (or its composition), the curl of 2D flux is zero. Both universality of gauge field and the difficulty of magnetic monopole theory ( a magnetic monopole has no effect on electric current just like a couple hasing no effect on the sum of forces) axe presented: magnetic monopole has no the feature of magnet. Finally it is pointed out that the base of relation of mass and energy is already involved in Maxwell's equations.
基金The work was supported by the Chinese National Science Foundation Project (10671184).
文摘The main aim of this paper is to provide convergence analysis of Quasi-Wilson nonconforming finite element to Maxwell's equations under arbitrary quadrilateral meshes.The error estimates are derived,which are the same as those for conforming elements under conventional regular meshes.
基金Supported by National Science Foundation of China(11971027,12171497)。
文摘This paper deals with quasilinear elliptic equations of singular growth like-Δu-uΔ(u^(2))=a(x)u^(-1).We establish the existence of positive solutions for general a(x)∈L^(p)(Ω),p>2,whereΩis a bounded domain inℝ^(N)with N≥1.
基金Supported by the National Natural Science Foundation of China(11671403,11671236,12101192)Henan Provincial General Natural Science Foundation Project(232300420113)。
文摘In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.
基金Supported by Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)+2 种基金Basic Research Plan of Shanxi Province(202203021211129)Shanxi Province Natural Science Research(202203021212249)Special/Youth Foundation of Taiyuan University of Technology(2022QN101)。
文摘In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.
基金supported by The National Natural Science Foundation of China(Grant No.12362034)The Scientific Research Project of Inner Mongolia University of Technology(Grant Nos.DC2200000913+1 种基金DC2300001439)The Science and Technology Plan Project of Inner Mongolia Autonomous Region(Grant No.2022YFSH0047)。
文摘Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of loess-mudstone and the unique water sensitivity characteristics of mudstone.Hence,it is imperative to develop innovative mechanical models and mathematical equations specifically tailored to loess-mudstone landslides.In this study,we analyze the fracture mechanism of the loess-mudstone sliding zone using plastic fracture mechanics and develop a unique fracture yield model.To calculate the energy release rate during the expansion of the loess-mudstone interface tip region,the shear fracture energy G is applied,which reflects both the yield failure criterion and the fracture failure criterion.To better understand the instability mechanism of loess-mudstone landslides,equilibrium equations based on G are established for tractive,compressive,and tensile loess-mudstone landslides.Based on the equilibrium equation,the critical length Lc of the sliding zone can be used for the safety evaluation of loess-mudstone landslides.In this way,this study proposes a new method for determining the failure mechanism and equilibrium equation of loessmudstone landslides,which resolves their starting mechanism,mechanical equilibrium equations,and safety evaluation indicators,thus justifying the scientific significance and practical value of this research.
文摘We review time-domain formulations of radiation boundary conditions for Maxwell's equations, focusing on methods which can deliver arbitrary accuracy at acceptable compu-tational cost. Examples include fast evaluations of nonlocal conditions on symmetric and general boundaries, methods based on identifying and evaluating equivalent sources, and local approximations such as the perfectly matched layer and sequences of local boundary conditions. Complexity estimates are derived to assess work and storage requirements as a function of wavelength and simulation time.
基金supported by Natural Science Foundation grant DMS-0810896
文摘In this paper, we consider the time dependent Maxwell's equations when dispersive media are involved. The Crank-Nicolson mixed finite element methods are developed for three most popular dispersive medium models: the isotropic cold plasma, the one-pole Debye medium and the two-pole Lorentz medium. Optimal error estimates are proved for all three models solved by the Raviart-Thomas-Ndd@lec spaces. Extensions to multiple pole dispersive media are presented also.
基金supported in part by National Natural Science Foundation of China(Grant Nos.10771178 and 10676031)National Key Basic Research Program of China(973 Program)(Grant No.2005CB321702)+3 种基金the Key Proiect of Chinese Ministry of Education and Scientific Research Fund of Hunan Provincial Education Department(Grant Nos.208093 and 07A068)Especially,the first author was also supported in part by Hunan Provincial Innovation Foundation for Postgraduatesupported by Alexander von Humboldt Research Award for Senior US Scientists,NSF DMS-0609727,NSFC-10528102Furong Professor Scholar Program of Hunan Province of China through Xiangtan University
文摘In this paper, we obtain optimal error estimates in both L^2-norm and H(curl)-norm for the Nedelec edge finite element approximation of the time-harmonic Maxwell's equations on a general Lipschitz domain discretized on quasi-uniform meshes. One key to our proof is to transform the L^2 error estimates into the L^2 estimate of a discrete divergence-free function which belongs to the edge finite element spaces, and then use the approximation of the discrete divergence-free function by the continuous divergence-free function and a duality argument for the continuous divergence-free function. For Nedelec's second type elements, we present an optimal convergence estimate which improves the best results available in the literature.
文摘In this paper, we give the state of the art for the so called “mixed spectral elements” for Maxwell's equations. Several families of elements, such as edge elements and discon-tinuous Galerkin methods (DGM) are presented and discussed. In particular, we show the need of introducing some numerical dissipation terms to avoid spurious modes in these methods. Such terms are classical for DGM but their use for edge element methods is novel approach described in this paper. Finally, numerical experiments show the fast and low-cost character of these elements.
基金Supported by the National Natural Science Foundation of China (No. 10971203)the Doctor Foundationof Henan Institute of Engineering (No. D09008)
文摘Abstract The main objective of this paper is to present a new rectangular nonconforming finite element scheme with the second order convergence behavior for approximation of Maxwell's equations. Then the corresponding optimal error estimates are derived. The difficulty in construction of this finite element scheme is how to choose a compatible pair of degrees of freedom and shape function space so as to make the consistency error due to the nonconformity of the element being of order O(h^3), properly one order higher than that of its interpolation error O(h^2) in the broken energy norm, where h is the subdivision parameter tending to zero.
基金supported by the US Army Ofce of Research(Grant No.W911NF11-1-0364)the National Science Foundation of USA(Grant No.DMS-1005441)National Natural Science Foundation of China(Grant No.91230105)
文摘The paper presents a new fast integral equation solver for Maxwell's equations in 3-D layered media. First, the spectral domain dyadic Green's function is derived, and the 0-th and the 1-st order Hankel transforms or Sommerfeld-type integrals are used to recover all components of the dyadic Green's function in real space. The Hankel transforms are performed with the adaptive generalized Gaussian quadrature points and window functions to minimize the computational cost. Subsequently, a fast integral equation solver with O(N2zNxNy log(NzNy)) in layered media is developed by rewriting the layered media integral operator in terms of Hankel transforms and using the new fast multipole method for the n-th order Bessel function in 2-D. Computational cost and parallel efficiency of the new algorithm are presented.
文摘Similarities and fundamental differences between Maxwell’s equations and nonlinear Schrodinger equation in predicting a soliton evolution in a uniform nonlinear anisotropic medium are analyzed.It is found that in some cases,the soliton solutions to the nonlinear Schrodinger equation cannot be recovered from Maxwell’s equations while in others the soliton solutions to Maxwell’s equations are lost from the nonlinear Schrodinger equation through approximation,although there are cases where the soliton solutions to the two sets of the equations demonstrate only quantitative difference.The origin of the differences is also discussed.
基金Project supported by the Rotary Yoneyama Doctor Course Scholarship (Japan) the Fujyu-kai (Tokyo, Japan)+1 种基金the 21st Century Center of Excellence Program at Graduate School of Mathematical Sciences, the University of Tokyo, the Japan Society for the Promotion of Science (No. 15340027)the Ministry of Education, Cultures, Sports and Technology (No. 17654019).
文摘The authors consider Maxwell's equations for an isomagnetic anisotropic and inhomogeneous medium in two dimensions, and discuss an inverse problem of determining the permittivity tensor (ε1,ε2,ε2,ε3 ) and the permeability μ in the constitutive relations from a finite number of lateral boundary measurements. Applying a Carleman estimate, the authors prove an estimate of the Lipschitz type for stability, provided that ε1,ε2,ε3,μ satisfy some a priori conditions.
基金Yuxi HU was supported by the NNSFC (11701556)the Yue Qi Young Scholar ProjectChina University of Mining and Technology (Beijing)。
文摘We investigate the low Mach number limit for the isentropic compressible NavierStokes equations with a revised Maxwell's law(with Galilean invariance) in R^(3). By applying the uniform estimates of the error system, it is proven that the solutions of the isentropic Navier-Stokes equations with a revised Maxwell's law converge to that of the incompressible Navier-Stokes equations as the Mach number tends to zero. Moreover, the convergence rates are also obtained.
基金supported by Natural Science Foundation of Shandong Province (GrantNo. Y2008A19)Research Reward for Excellent Young Scientists from Shandong Province (Grant No. 2007BS01020)National Natural Science Foundation of China (Grant No. 11071244)
文摘This paper is concerned with the optimal error estimates and energy conservation properties of the alternating direction implicit finite-difference time-domain (ADI-FDTD) method which is a popular scheme for solving the 3D Maxwell's equations. Precisely, for the case with a perfectly electric conducting (PEC) boundary condition we establish the optimal second-order error estimates in both space and time in the discrete Hi-norm for the ADI-FDTD scheme, and prove the approximate divergence preserving property that if the divergence of the initial electric and magnetic fields are zero, then the discrete L2-norm of the discrete divergence of the ADI-FDTD solution is approximately zero with the second-order accuracy in both space and time. The key ingredient is two new discrete modified energy norms which are second-order in time perturbations of two new energy conservation laws for the Maxwell's equations introduced in this paper. ~rthermore, we prove that, in addition to two known discrete modified energy identities which are second-order in time perturbations of two known energy conservation laws, the ADI-FDTD scheme also satisfies two new discrete modified energy identities which are second-order in time perturbations of the two new energy conservation laws. This means that the ADI-FDTD scheme is unconditionally stable under the four discrete modified energy norms. Experimental results which confirm the theoretical results are presented.
基金supported by the National Natural Science Foundation of China(12271296,12271195).
文摘This paper is a continuation of recent work by Guo-Xiang-Zheng[10].We deduce the sharp Morrey regularity theory for weak solutions to the fourth order nonhomogeneous Lamm-Rivière equation △^{2}u=△(V▽u)+div(w▽u)+(▽ω+F)·▽u+f in B^(4),under the smallest regularity assumptions of V,ω,ω,F,where f belongs to some Morrey spaces.This work was motivated by many geometrical problems such as the flow of biharmonic mappings.Our results deepens the Lp type regularity theory of[10],and generalizes the work of Du,Kang and Wang[4]on a second order problem to our fourth order problems.
基金supported by NSFC Projects(Nos.11771371,12171411,11971410)Project of Scientific Research Fund of Hunan Provincial Science and Technology Department(No.2018WK4006)+1 种基金Project of Scientific Research Fund of Hunan Provincial Science and Technology Department,China(No.2020ZYT003)National defense basic scientific research program JCKY2019403D001.
文摘In this paper,we study the a posteriori error estimator of SDG method for variable coefficients time-harmonic Maxwell's equations.We propose two a posteriori error estimators,one is the recovery-type estimator,and the other is the residual-type estimator.We first propose the curl-recovery method for the staggered discontinuous Galerkin method(SDGM),and based on the super-convergence result of the postprocessed solution,an asymptotically exact error estimator is constructed.The residual-type a posteriori error estimator is also proposed,and it's reliability and effectiveness are proved for variable coefficients time-harmonic Maxwell's equations.The efficiency and robustness of the proposed estimators is demonstrated by the numerical experiments.