This paper considers weak Galerkin finite element approximations on polygonal/polyhedral meshes for a quasistatic Maxwell viscoelastic model.The spatial discretization uses piecewise polynomials of degree k(k≥1)for t...This paper considers weak Galerkin finite element approximations on polygonal/polyhedral meshes for a quasistatic Maxwell viscoelastic model.The spatial discretization uses piecewise polynomials of degree k(k≥1)for the stress approximation,degree k+1 for the velocity approximation,and degree k for the numerical trace of velocity on the inter-element boundaries.The temporal discretization in the fully discrete method adopts a backward Euler difference scheme.We show the existence and uniqueness of the semi-discrete and fully discrete solutions,and derive optimal a priori error estimates.Numerical examples are provided to support the theoretical analysis.展开更多
Semi-discrete and fully discrete mixedfinite element methods are consid-ered for Maxwell-model-based problems of wave propagation in linear viscoelastic solid.This mixedfinite element framework allows the use of a large...Semi-discrete and fully discrete mixedfinite element methods are consid-ered for Maxwell-model-based problems of wave propagation in linear viscoelastic solid.This mixedfinite element framework allows the use of a large class of exist-ing mixed conformingfinite elements for elasticity in the spatial discretization.In the fully discrete scheme,a Crank-Nicolson scheme is adopted for the approximation of the temporal derivatives of stress and velocity variables.Error estimates of the semi-discrete and fully discrete schemes,as well as an unconditional stability result for the fully discrete scheme,are derived.Numerical experiments are provided to verify the theoretical results.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.12171340).
文摘This paper considers weak Galerkin finite element approximations on polygonal/polyhedral meshes for a quasistatic Maxwell viscoelastic model.The spatial discretization uses piecewise polynomials of degree k(k≥1)for the stress approximation,degree k+1 for the velocity approximation,and degree k for the numerical trace of velocity on the inter-element boundaries.The temporal discretization in the fully discrete method adopts a backward Euler difference scheme.We show the existence and uniqueness of the semi-discrete and fully discrete solutions,and derive optimal a priori error estimates.Numerical examples are provided to support the theoretical analysis.
基金supported in part by National Natural Science Foundation of China(No.11771312).
文摘Semi-discrete and fully discrete mixedfinite element methods are consid-ered for Maxwell-model-based problems of wave propagation in linear viscoelastic solid.This mixedfinite element framework allows the use of a large class of exist-ing mixed conformingfinite elements for elasticity in the spatial discretization.In the fully discrete scheme,a Crank-Nicolson scheme is adopted for the approximation of the temporal derivatives of stress and velocity variables.Error estimates of the semi-discrete and fully discrete schemes,as well as an unconditional stability result for the fully discrete scheme,are derived.Numerical experiments are provided to verify the theoretical results.