In this work,we develop energy stable numerical methods to simulate electromagnetic waves propagating in optical media where the media responses include the linear Lorentz dispersion,the instantaneous nonlinear cubic ...In this work,we develop energy stable numerical methods to simulate electromagnetic waves propagating in optical media where the media responses include the linear Lorentz dispersion,the instantaneous nonlinear cubic Kerr response,and the nonlinear delayed Raman molecular vibrational response.Unlike the first-order PDE-ODE governing equations considered previously in Bokil et al.(J Comput Phys 350:420–452,2017)and Lyu et al.(J Sci Comput 89:1–42,2021),a model of mixed-order form is adopted here that consists of the first-order PDE part for Maxwell’s equations coupled with the second-order ODE part(i.e.,the auxiliary differential equations)modeling the linear and nonlinear dispersion in the material.The main contribution is a new numerical strategy to treat the Kerr and Raman nonlinearities to achieve provable energy stability property within a second-order temporal discretization.A nodal discontinuous Galerkin(DG)method is further applied in space for efficiently handling nonlinear terms at the algebraic level,while preserving the energy stability and achieving high-order accuracy.Indeed with d_(E)as the number of the components of the electric field,only a d_(E)×d_(E)nonlinear algebraic system needs to be solved at each interpolation node,and more importantly,all these small nonlinear systems are completely decoupled over one time step,rendering very high parallel efficiency.We evaluate the proposed schemes by comparing them with the methods in Bokil et al.(2017)and Lyu et al.(2021)(implemented in nodal form)regarding the accuracy,computational efficiency,and energy stability,by a parallel scalability study,and also through the simulations of the soliton-like wave propagation in one dimension,as well as the spatial-soliton propagation and two-beam interactions modeled by the two-dimensional transverse electric(TE)mode of the equations.展开更多
In the articles “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” and “The Gravitational Interaction between Moving Mass Particles Explained by the Theory of Informatons” the gravitatio...In the articles “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” and “The Gravitational Interaction between Moving Mass Particles Explained by the Theory of Informatons” the gravitational interaction has been explained by the hypothesis that information carried by informatons is the substance of gravitational fields, i.e. the medium that the interaction in question makes possible. From the idea that “information carried by informatons” is its substance, it has been deduced that—on the macroscopic level—a gravitational field manifests itself as a dual entity, always having a field- and an induction component (Egand Bg) simultaneously created by their common sources. In this article we will mathematically deduce the Maxwell-Heaviside equations from the kinematics of the informatons. These relations describe on the macroscopic level how a gravitational field (Eg, Bg) is generated by whether or not moving masses and how spatial and temporal changes of Egand Bgare related. We show that there is no causal link between Egand Bg.展开更多
The study of Electromagnetic Compatibility is essential to ensure the harmonious operation of electronic equipment in a shared environment. The basic principles of Electromagnetic Compatibility focus on the ability of...The study of Electromagnetic Compatibility is essential to ensure the harmonious operation of electronic equipment in a shared environment. The basic principles of Electromagnetic Compatibility focus on the ability of devices to withstand electromagnetic disturbances and not produce disturbances that could affect other systems. Imperceptible in most work situations, electromagnetic fields can, beyond certain thresholds, have effects on human health. The objective of the present article is focused on the modeling analysis of the influence of geometric parameters of industrial static converters radiated electromagnetic fields using Maxwell’s equations. To do this we used the analytical formalism for calculating the electromagnetic field emitted by a filiform conductor, to model the electromagnetic radiation of this device in the spatio-temporal domain. The interactions of electromagnetic waves with human bodies are complex and depend on several factors linked to the characteristics of the incident wave. To model these interactions, we implemented the physical laws of electromagnetic wave propagation based on Maxwell’s and bio-heat equations to obtain consistent results. These obtained models allowed us to evaluate the spatial profile of induced current and temperature of biological tissue during exposure to electromagnetic waves generated by this system. The simulation 2D results obtained from computer tools show that the temperature variation and current induced by the electromagnetic field can have a very significant influence on the life of biological tissue. The paper provides a comprehensive analysis using advanced mathematical models to evaluate the influence of electromagnetic fields. The findings have direct implications for workplace safety, potentially influencing standards and regulations concerning electromagnetic exposure in industrial settings.展开更多
We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filament...We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma. We examined the performance of the applied scheme, in this context, we implemented the developed model to study selected phenomena in terahertz radiation production, such as the excitation energy and conversion efficiency of the produced THz radiation, in addition to the influence of the pulse chirping on properties of the produced radiation. The obtained numerical results have clarified that the applied HO-FDTD scheme is precisely accurate to solve Maxwell’s equations and sufficiently valid to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma.展开更多
The manuscript introduces an “ab initio” quantum model to deduce the Maxwell equations. After general considerations and laying out the model’s theoretical framework, these equations can be derived alongside a broa...The manuscript introduces an “ab initio” quantum model to deduce the Maxwell equations. After general considerations and laying out the model’s theoretical framework, these equations can be derived alongside a broad variety of other results. Specifically, a corollary of the present model proposes a possible mechanism underlying the formation of magnetic monopoles and allows estimating their formation energy in order of magnitude.展开更多
Maxwell’s equations in electromagnetism can be categorized into three dis-tinct groups based on the electromagnetic source when employing quaterni-ons. Each group represents a self-contained system in which Maxwell’...Maxwell’s equations in electromagnetism can be categorized into three dis-tinct groups based on the electromagnetic source when employing quaterni-ons. Each group represents a self-contained system in which Maxwell’s equations are applied and validated concurrently, in contrast to the previous approach that did not account for this. It has been noted that the formulation of these Maxwell equations ultimately results in the formulation of Max-well’s equations utilizing the scalar function.展开更多
Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridyna...Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.展开更多
An FDTD system associated with uniaxial perfectly matched layer(UPML) for an electromagnetic scattering problem in two-dimensional space in polar coordinates is considered.Particularly the FDTD system of an initial-...An FDTD system associated with uniaxial perfectly matched layer(UPML) for an electromagnetic scattering problem in two-dimensional space in polar coordinates is considered.Particularly the FDTD system of an initial-boundary value problems of the transverse magnetic(TM) mode to Maxwell's equations is obtained by Yee's algorithm,and the open domain of the scattering problem is truncated by a circle with a UPML.Besides,an artificial boundary condition is imposed on the outer boundary of the UPML.Afterwards,stability of the FDTD system on the truncated domain is established through energy estimates by the Gronwall inequality.Numerical experiments are designed to approve the theoretical analysis.展开更多
Some new reflection principles for Maxwell's equations are first established, which are then applied to derive two novel identifiability results in inverse electromagnetic obstacle scattering problems with polyhed...Some new reflection principles for Maxwell's equations are first established, which are then applied to derive two novel identifiability results in inverse electromagnetic obstacle scattering problems with polyhedral scatterers.展开更多
A high-order leap-frog based non-dissipative discontinuous Galerkin time- domain method for solving Maxwell's equations is introduced and analyzed. The pro- posed method combines a centered approximation for the eval...A high-order leap-frog based non-dissipative discontinuous Galerkin time- domain method for solving Maxwell's equations is introduced and analyzed. The pro- posed method combines a centered approximation for the evaluation of fluxes at the in- terface between neighboring elements, with a Nth-order leap-frog time scheme. More- over, the interpolation degree is defined at the element level and the mesh is refined locally in a non-conforming way resulting in arbitrary level hanging nodes. The method is proved to be stable under some CFL-like condition on the time step. The convergence of the semi-discrete approximation to Maxwelrs equations is established rigorously and bounds on the global divergence error are provided. Numerical experiments with high- order elements show the potential of the method.展开更多
A unified complex model of Maxwell's equations is presented.The wave nature of the electromagnetic field vector is related to the temporal and spatial distributions and the circulation of charge and current densities...A unified complex model of Maxwell's equations is presented.The wave nature of the electromagnetic field vector is related to the temporal and spatial distributions and the circulation of charge and current densities.A new vacuum solution is obtained,and a new transformation under which Maxwell's equations are invariant is proposed.This transformation extends ordinary gauge transformation to include charge-current as well as scalar-vector potential.An electric dipole moment is found to be related to the magnetic charges,and Dirac's quantization is found to determine an uncertainty relation expressing the indeterminacy of electric and magnetic charges.We generalize Maxwell's equations to include longitudinal waves.A formal analogy between this formulation and Dirac's equation is also discussed.展开更多
Stochastic-periodic homogenization is studied for the Maxwell equations with the linear "and periodic electric conductivity. It is shown by the stochastic-two-scale convergence method that the sequence of solutions t...Stochastic-periodic homogenization is studied for the Maxwell equations with the linear "and periodic electric conductivity. It is shown by the stochastic-two-scale convergence method that the sequence of solutions to a class of highly oscillatory problems converges to the solution of a homogenized Maxwell equation.展开更多
The notion of the inner product of vectors is extended to tensors of different orders, which may replace the vector product usually. The essences of the differential and the codiffcrential forms are pointed out: they...The notion of the inner product of vectors is extended to tensors of different orders, which may replace the vector product usually. The essences of the differential and the codiffcrential forms are pointed out: they represent the tangent surface and the normal surface fluxes of a tensor, reslpetivcly. The definitions of the divergence and the curl of a 2D surface flux of a tensor arc obtained. Maxwell's equations, namely, the constraction law of field, which were usually established based on two conservation laws of electric charge and imaginary magnetic charge, are derived by the author only by using one conservation law ( mass or fluid flux quantity and so on) and the feature of central field (or its composition). By the feature of central field (or its composition), the curl of 2D flux is zero. Both universality of gauge field and the difficulty of magnetic monopole theory ( a magnetic monopole has no effect on electric current just like a couple hasing no effect on the sum of forces) axe presented: magnetic monopole has no the feature of magnet. Finally it is pointed out that the base of relation of mass and energy is already involved in Maxwell's equations.展开更多
Several new energy identities of the two dimenslonal(2D) Maxwell equations in a lossy medium in the case of the perfectly electric conducting boundary conditions are proposed and proved. These identities show a new ...Several new energy identities of the two dimenslonal(2D) Maxwell equations in a lossy medium in the case of the perfectly electric conducting boundary conditions are proposed and proved. These identities show a new kind of energy conservation in the Maxwell system and provide a new energy method to analyze the alternating direction im- plicit finite difference time domain method for the 2D Maxwell equations (2D-ADI-FDTD). It is proved that 2D-ADI-FDTD is approximately energy conserved, unconditionally sta- ble and second order convergent in the discrete L2 and H1 norms, which implies that 2D-ADI-FDTD is super convergent. By this super convergence, it is simply proved that the error of the divergence of the solution of 2D-ADI-FDTD is second order accurate. It is also proved that the difference scheme of 2D-ADI-FDTD with respect to time t is second order convergent in the discrete H1 norm. Experimental results to confirm the theoretical analysis on stability, convergence and energy conservation are presented.展开更多
This paper presents a method to find Noether-type conserved quantities and Lie point symmetries for discrete mechanico-electrical dynamical systems,which leave invuriant the set of solutions of the corresponding diffe...This paper presents a method to find Noether-type conserved quantities and Lie point symmetries for discrete mechanico-electrical dynamical systems,which leave invuriant the set of solutions of the corresponding difference scheme. This approach makes it possible to devise techniques for solving the Lagrange Maxwell equations in differences which correspond to mechanico-electrical systems,by adapting existing differential equations.In particular,it obtains a new systematic method to determine both the one-parameter Lie groups and the discrete Noether conserved quantities of Lie point symmetries for mechanico-electrical systems.As an application,it obtains the Lie point symmetries and the conserved quantities for the difference equation of a model that represents a capacitor microphone.展开更多
In this paper,a self-adaptive method for the Maxwell’s Equations Derived Optimization(MEDO)is proposed.It is implemented by applying the Sequential Model-Based Optimization(SMBO)algorithm to the iterations of the MED...In this paper,a self-adaptive method for the Maxwell’s Equations Derived Optimization(MEDO)is proposed.It is implemented by applying the Sequential Model-Based Optimization(SMBO)algorithm to the iterations of the MEDO,and achieves the automatic adjustment of the parameters.The proposed method is named as adaptive Maxwell’s equations derived optimization(AMEDO).In order to evaluate the performance of AMEDO,eight benchmarks are used and the results are compared with the original MEDO method.The results show that AMEDO can greatly reduce the workload of manual adjustment of parameters,and at the same time can keep the accuracy and stability.Moreover,the convergence of the optimization can be accelerated due to the dynamical adjustment of the parameters.In the end,the proposed AMEDO is applied to the side lobe level suppression and array failure correction of a linear antenna array,and shows great potential in antenna array synthesis.展开更多
According to Hypersphere World-Universe Model, dark matter particles DIRACs are magnetic dipoles consisting of two Dirac’s monopoles. We conclude that DIRACs are the subject of Maxwell’s equations. So-called “auxil...According to Hypersphere World-Universe Model, dark matter particles DIRACs are magnetic dipoles consisting of two Dirac’s monopoles. We conclude that DIRACs are the subject of Maxwell’s equations. So-called “auxiliary” magnetic field intensity H is indeed current density of magnetic dipoles. The developed approach to magnetic field can explain a wealth of discovered phenomena in Cosmic Magnetism: a dark magnetic field, the large-scale structure of the Milky Way’s magnetic field, and other magnetic phenomena which are only partly related to objects visible in other spectral ranges.展开更多
A new unification of the Maxwell equations is given in the domain of Clifford algebras with in a fashion similar to those obtained with Pauli and Dirac algebras. It is shown that the new electromagnetic field multivec...A new unification of the Maxwell equations is given in the domain of Clifford algebras with in a fashion similar to those obtained with Pauli and Dirac algebras. It is shown that the new electromagnetic field multivector can be obtained from a potential function that is closely related to the scalar and the vector potentials of classical electromagnetics. Additionally it is shown that the gauge transformations of the new multivector and its potential function and the Lagrangian density of the electromagnetic field are in agreement with the transformation rules of the second-rank antisymmetric electromagnetic field tensor, in contrast to the results obtained by applying other versions of Clifford algebras.展开更多
Global existence of classical solutions to the relativistic Vlasov-Maxwell system, given sufficiently regular initial data, is a long-standing open problem. The aim of this project is to present in details the results...Global existence of classical solutions to the relativistic Vlasov-Maxwell system, given sufficiently regular initial data, is a long-standing open problem. The aim of this project is to present in details the results of a paper published in 1986 by Robert Glassey and Walter Strauss. In that paper, a sufficient condition for the global existence of a smooth solution to the relativistic Vlasov-Maxwell system is derived. In the following, the resulting theorem is proved by taking initial data , . A small data global existence result is presented as well.展开更多
The main aim of this paper is to provide convergence analysis of Quasi-Wilson nonconforming finite element to Maxwell's equations under arbitrary quadrilateral meshes.The error estimates are derived,which are the ...The main aim of this paper is to provide convergence analysis of Quasi-Wilson nonconforming finite element to Maxwell's equations under arbitrary quadrilateral meshes.The error estimates are derived,which are the same as those for conforming elements under conventional regular meshes.展开更多
基金supported by China Postdoctoral Science Foundation grant 2020TQ0344the NSFC grants 11871139 and 12101597the NSF grants DMS-1720116,DMS-2012882,DMS-2011838,DMS-1719942,DMS-1913072.
文摘In this work,we develop energy stable numerical methods to simulate electromagnetic waves propagating in optical media where the media responses include the linear Lorentz dispersion,the instantaneous nonlinear cubic Kerr response,and the nonlinear delayed Raman molecular vibrational response.Unlike the first-order PDE-ODE governing equations considered previously in Bokil et al.(J Comput Phys 350:420–452,2017)and Lyu et al.(J Sci Comput 89:1–42,2021),a model of mixed-order form is adopted here that consists of the first-order PDE part for Maxwell’s equations coupled with the second-order ODE part(i.e.,the auxiliary differential equations)modeling the linear and nonlinear dispersion in the material.The main contribution is a new numerical strategy to treat the Kerr and Raman nonlinearities to achieve provable energy stability property within a second-order temporal discretization.A nodal discontinuous Galerkin(DG)method is further applied in space for efficiently handling nonlinear terms at the algebraic level,while preserving the energy stability and achieving high-order accuracy.Indeed with d_(E)as the number of the components of the electric field,only a d_(E)×d_(E)nonlinear algebraic system needs to be solved at each interpolation node,and more importantly,all these small nonlinear systems are completely decoupled over one time step,rendering very high parallel efficiency.We evaluate the proposed schemes by comparing them with the methods in Bokil et al.(2017)and Lyu et al.(2021)(implemented in nodal form)regarding the accuracy,computational efficiency,and energy stability,by a parallel scalability study,and also through the simulations of the soliton-like wave propagation in one dimension,as well as the spatial-soliton propagation and two-beam interactions modeled by the two-dimensional transverse electric(TE)mode of the equations.
文摘In the articles “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” and “The Gravitational Interaction between Moving Mass Particles Explained by the Theory of Informatons” the gravitational interaction has been explained by the hypothesis that information carried by informatons is the substance of gravitational fields, i.e. the medium that the interaction in question makes possible. From the idea that “information carried by informatons” is its substance, it has been deduced that—on the macroscopic level—a gravitational field manifests itself as a dual entity, always having a field- and an induction component (Egand Bg) simultaneously created by their common sources. In this article we will mathematically deduce the Maxwell-Heaviside equations from the kinematics of the informatons. These relations describe on the macroscopic level how a gravitational field (Eg, Bg) is generated by whether or not moving masses and how spatial and temporal changes of Egand Bgare related. We show that there is no causal link between Egand Bg.
文摘The study of Electromagnetic Compatibility is essential to ensure the harmonious operation of electronic equipment in a shared environment. The basic principles of Electromagnetic Compatibility focus on the ability of devices to withstand electromagnetic disturbances and not produce disturbances that could affect other systems. Imperceptible in most work situations, electromagnetic fields can, beyond certain thresholds, have effects on human health. The objective of the present article is focused on the modeling analysis of the influence of geometric parameters of industrial static converters radiated electromagnetic fields using Maxwell’s equations. To do this we used the analytical formalism for calculating the electromagnetic field emitted by a filiform conductor, to model the electromagnetic radiation of this device in the spatio-temporal domain. The interactions of electromagnetic waves with human bodies are complex and depend on several factors linked to the characteristics of the incident wave. To model these interactions, we implemented the physical laws of electromagnetic wave propagation based on Maxwell’s and bio-heat equations to obtain consistent results. These obtained models allowed us to evaluate the spatial profile of induced current and temperature of biological tissue during exposure to electromagnetic waves generated by this system. The simulation 2D results obtained from computer tools show that the temperature variation and current induced by the electromagnetic field can have a very significant influence on the life of biological tissue. The paper provides a comprehensive analysis using advanced mathematical models to evaluate the influence of electromagnetic fields. The findings have direct implications for workplace safety, potentially influencing standards and regulations concerning electromagnetic exposure in industrial settings.
文摘We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma. We examined the performance of the applied scheme, in this context, we implemented the developed model to study selected phenomena in terahertz radiation production, such as the excitation energy and conversion efficiency of the produced THz radiation, in addition to the influence of the pulse chirping on properties of the produced radiation. The obtained numerical results have clarified that the applied HO-FDTD scheme is precisely accurate to solve Maxwell’s equations and sufficiently valid to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma.
文摘The manuscript introduces an “ab initio” quantum model to deduce the Maxwell equations. After general considerations and laying out the model’s theoretical framework, these equations can be derived alongside a broad variety of other results. Specifically, a corollary of the present model proposes a possible mechanism underlying the formation of magnetic monopoles and allows estimating their formation energy in order of magnitude.
文摘Maxwell’s equations in electromagnetism can be categorized into three dis-tinct groups based on the electromagnetic source when employing quaterni-ons. Each group represents a self-contained system in which Maxwell’s equations are applied and validated concurrently, in contrast to the previous approach that did not account for this. It has been noted that the formulation of these Maxwell equations ultimately results in the formulation of Max-well’s equations utilizing the scalar function.
文摘Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.
文摘An FDTD system associated with uniaxial perfectly matched layer(UPML) for an electromagnetic scattering problem in two-dimensional space in polar coordinates is considered.Particularly the FDTD system of an initial-boundary value problems of the transverse magnetic(TM) mode to Maxwell's equations is obtained by Yee's algorithm,and the open domain of the scattering problem is truncated by a circle with a UPML.Besides,an artificial boundary condition is imposed on the outer boundary of the UPML.Afterwards,stability of the FDTD system on the truncated domain is established through energy estimates by the Gronwall inequality.Numerical experiments are designed to approve the theoretical analysis.
基金supported by NSF grant,FRG DMS 0554571supported substantially by Hong Kong RGC grant (Project 404407)partially by Cheung Kong Scholars Programme through Wuhan University,China.
文摘Some new reflection principles for Maxwell's equations are first established, which are then applied to derive two novel identifiability results in inverse electromagnetic obstacle scattering problems with polyhedral scatterers.
基金supported by a grant from the French National Ministry of Education and Research(MENSR,19755-2005)
文摘A high-order leap-frog based non-dissipative discontinuous Galerkin time- domain method for solving Maxwell's equations is introduced and analyzed. The pro- posed method combines a centered approximation for the evaluation of fluxes at the in- terface between neighboring elements, with a Nth-order leap-frog time scheme. More- over, the interpolation degree is defined at the element level and the mesh is refined locally in a non-conforming way resulting in arbitrary level hanging nodes. The method is proved to be stable under some CFL-like condition on the time step. The convergence of the semi-discrete approximation to Maxwelrs equations is established rigorously and bounds on the global divergence error are provided. Numerical experiments with high- order elements show the potential of the method.
文摘A unified complex model of Maxwell's equations is presented.The wave nature of the electromagnetic field vector is related to the temporal and spatial distributions and the circulation of charge and current densities.A new vacuum solution is obtained,and a new transformation under which Maxwell's equations are invariant is proposed.This transformation extends ordinary gauge transformation to include charge-current as well as scalar-vector potential.An electric dipole moment is found to be related to the magnetic charges,and Dirac's quantization is found to determine an uncertainty relation expressing the indeterminacy of electric and magnetic charges.We generalize Maxwell's equations to include longitudinal waves.A formal analogy between this formulation and Dirac's equation is also discussed.
文摘Stochastic-periodic homogenization is studied for the Maxwell equations with the linear "and periodic electric conductivity. It is shown by the stochastic-two-scale convergence method that the sequence of solutions to a class of highly oscillatory problems converges to the solution of a homogenized Maxwell equation.
文摘The notion of the inner product of vectors is extended to tensors of different orders, which may replace the vector product usually. The essences of the differential and the codiffcrential forms are pointed out: they represent the tangent surface and the normal surface fluxes of a tensor, reslpetivcly. The definitions of the divergence and the curl of a 2D surface flux of a tensor arc obtained. Maxwell's equations, namely, the constraction law of field, which were usually established based on two conservation laws of electric charge and imaginary magnetic charge, are derived by the author only by using one conservation law ( mass or fluid flux quantity and so on) and the feature of central field (or its composition). By the feature of central field (or its composition), the curl of 2D flux is zero. Both universality of gauge field and the difficulty of magnetic monopole theory ( a magnetic monopole has no effect on electric current just like a couple hasing no effect on the sum of forces) axe presented: magnetic monopole has no the feature of magnet. Finally it is pointed out that the base of relation of mass and energy is already involved in Maxwell's equations.
基金supported by Shandong Provincial Natural Science Foundation(Y2008A19)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘Several new energy identities of the two dimenslonal(2D) Maxwell equations in a lossy medium in the case of the perfectly electric conducting boundary conditions are proposed and proved. These identities show a new kind of energy conservation in the Maxwell system and provide a new energy method to analyze the alternating direction im- plicit finite difference time domain method for the 2D Maxwell equations (2D-ADI-FDTD). It is proved that 2D-ADI-FDTD is approximately energy conserved, unconditionally sta- ble and second order convergent in the discrete L2 and H1 norms, which implies that 2D-ADI-FDTD is super convergent. By this super convergence, it is simply proved that the error of the divergence of the solution of 2D-ADI-FDTD is second order accurate. It is also proved that the difference scheme of 2D-ADI-FDTD with respect to time t is second order convergent in the discrete H1 norm. Experimental results to confirm the theoretical analysis on stability, convergence and energy conservation are presented.
基金Project supported by the National Natural Science Foundation of China (Grants Nos 10672143 and 60575055)State Key Laboratory of Scientific and Engineering Computing,Chinese Academy of Sciences+1 种基金Tang Yi-Fa acknowledges the support under Sabbatical Program (SAB2006-0070) of the Spanish Ministry of Education and ScienceJimnez S and Vzquez L acknowledge support of the Spanish Ministry of Education and Science (Grant No MTM2005-05573)
文摘This paper presents a method to find Noether-type conserved quantities and Lie point symmetries for discrete mechanico-electrical dynamical systems,which leave invuriant the set of solutions of the corresponding difference scheme. This approach makes it possible to devise techniques for solving the Lagrange Maxwell equations in differences which correspond to mechanico-electrical systems,by adapting existing differential equations.In particular,it obtains a new systematic method to determine both the one-parameter Lie groups and the discrete Noether conserved quantities of Lie point symmetries for mechanico-electrical systems.As an application,it obtains the Lie point symmetries and the conserved quantities for the difference equation of a model that represents a capacitor microphone.
基金the National Nature Science Foundation of China(No.61427803).
文摘In this paper,a self-adaptive method for the Maxwell’s Equations Derived Optimization(MEDO)is proposed.It is implemented by applying the Sequential Model-Based Optimization(SMBO)algorithm to the iterations of the MEDO,and achieves the automatic adjustment of the parameters.The proposed method is named as adaptive Maxwell’s equations derived optimization(AMEDO).In order to evaluate the performance of AMEDO,eight benchmarks are used and the results are compared with the original MEDO method.The results show that AMEDO can greatly reduce the workload of manual adjustment of parameters,and at the same time can keep the accuracy and stability.Moreover,the convergence of the optimization can be accelerated due to the dynamical adjustment of the parameters.In the end,the proposed AMEDO is applied to the side lobe level suppression and array failure correction of a linear antenna array,and shows great potential in antenna array synthesis.
文摘According to Hypersphere World-Universe Model, dark matter particles DIRACs are magnetic dipoles consisting of two Dirac’s monopoles. We conclude that DIRACs are the subject of Maxwell’s equations. So-called “auxiliary” magnetic field intensity H is indeed current density of magnetic dipoles. The developed approach to magnetic field can explain a wealth of discovered phenomena in Cosmic Magnetism: a dark magnetic field, the large-scale structure of the Milky Way’s magnetic field, and other magnetic phenomena which are only partly related to objects visible in other spectral ranges.
文摘A new unification of the Maxwell equations is given in the domain of Clifford algebras with in a fashion similar to those obtained with Pauli and Dirac algebras. It is shown that the new electromagnetic field multivector can be obtained from a potential function that is closely related to the scalar and the vector potentials of classical electromagnetics. Additionally it is shown that the gauge transformations of the new multivector and its potential function and the Lagrangian density of the electromagnetic field are in agreement with the transformation rules of the second-rank antisymmetric electromagnetic field tensor, in contrast to the results obtained by applying other versions of Clifford algebras.
文摘Global existence of classical solutions to the relativistic Vlasov-Maxwell system, given sufficiently regular initial data, is a long-standing open problem. The aim of this project is to present in details the results of a paper published in 1986 by Robert Glassey and Walter Strauss. In that paper, a sufficient condition for the global existence of a smooth solution to the relativistic Vlasov-Maxwell system is derived. In the following, the resulting theorem is proved by taking initial data , . A small data global existence result is presented as well.
基金The work was supported by the Chinese National Science Foundation Project (10671184).
文摘The main aim of this paper is to provide convergence analysis of Quasi-Wilson nonconforming finite element to Maxwell's equations under arbitrary quadrilateral meshes.The error estimates are derived,which are the same as those for conforming elements under conventional regular meshes.