The present study aims to investigate the salient features of incompressible, hydromagnetic, three-dimensional flow of viscous fluid subject to the oscillatory motion of a disk. The rotating disk is contained in a por...The present study aims to investigate the salient features of incompressible, hydromagnetic, three-dimensional flow of viscous fluid subject to the oscillatory motion of a disk. The rotating disk is contained in a porous medium. Furthermore, a time-invariant version of the Maxwell-Cattaneo law is implemented in the energy equation. The flow problem is normalized by obtaining similarity variables. The resulting nonlinear system is solved numerically using the successive over-relaxation method. The main results are discussed through graphical representations and tables. It is perceived that the thermal relaxation time parameter decreases the temperature curves and increases the heat trans- fer rate. The oscillatory curves for the velocity field demonstrate a decreasing tendency with the increasing porosity parameter values. Two- and three-dimensional flow phenom- ena are also shown through graphical results.展开更多
The effects of result from the substitution of the classical Fourier law by the non-classical Maxwell-Cattaneo law on the Rayleigh-Bénard Magneto-convection in an electrically conducting micropolar fluid is studi...The effects of result from the substitution of the classical Fourier law by the non-classical Maxwell-Cattaneo law on the Rayleigh-Bénard Magneto-convection in an electrically conducting micropolar fluid is studied using the Galerkin technique. The eigenvalue is obtained for free-free, rigid-free and rigid-rigid velocity boundary combinations with isothermal or adiabatic temperature on the spin-vanishing boundaries. The influences of various micropolar fluid parameters are analyzed on the onset of convection. The classical approach predicts an infinite speed for the propagation of heat. The present non-classical theory involves a wave type heat transport (SECOND SOUND) and does not suffer from the physically unacceptable drawback of infinite heat propagation speed. It is found that the results are noteworthy at short times and the critical eigenvalues are less than the classical ones.展开更多
Harmonic thermoelastic waves in helical strands with Maxwell–Cattaneo heat conduction areinvestigated analytically and numerically. The corresponding dispersion relation is a sixth-orderalgebraic equation, governed b...Harmonic thermoelastic waves in helical strands with Maxwell–Cattaneo heat conduction areinvestigated analytically and numerically. The corresponding dispersion relation is a sixth-orderalgebraic equation, governed by six non-dimensional parameters: two thermoelastic couplingconstants, one chirality parameter, the ratio between extensional and torsional moduli, the Fouriernumber, and the dimensionless thermal relaxation. The behavior of the solutions is discussedfrom two perspectives with an asymptotic-numerical approach: (1) the effect of thermal relaxationon the elastic wave celerities, and (2) the effect of thermoelastic coupling on the thermal wavecelerities. With small wavenumbers, the adiabatic solution for Fourier helical strands is recovered.However, with large wavenumbers, the solutions behave differently depending on the thermalrelaxation and chirality. Due to thermoelastic coupling, the thermal wave celerity deviates from theclassical result of the speed of second sound.展开更多
Our aim in this paper is to study on the Caginalp for a conserved phase-field with a polynomial potentiel of order 2<em>p</em> - 1. In this part, one treats the conservative version of the problem of gener...Our aim in this paper is to study on the Caginalp for a conserved phase-field with a polynomial potentiel of order 2<em>p</em> - 1. In this part, one treats the conservative version of the problem of generalized phase field. We consider a regular potential, more precisely a polynomial term of the order 2<em>p</em> - 1 with edge conditions of Dirichlet type. Existence and uniqueness are analyzed. More precisely, we precisely, we prove the existence and uniqueness of solutions.展开更多
文摘The present study aims to investigate the salient features of incompressible, hydromagnetic, three-dimensional flow of viscous fluid subject to the oscillatory motion of a disk. The rotating disk is contained in a porous medium. Furthermore, a time-invariant version of the Maxwell-Cattaneo law is implemented in the energy equation. The flow problem is normalized by obtaining similarity variables. The resulting nonlinear system is solved numerically using the successive over-relaxation method. The main results are discussed through graphical representations and tables. It is perceived that the thermal relaxation time parameter decreases the temperature curves and increases the heat trans- fer rate. The oscillatory curves for the velocity field demonstrate a decreasing tendency with the increasing porosity parameter values. Two- and three-dimensional flow phenom- ena are also shown through graphical results.
文摘The effects of result from the substitution of the classical Fourier law by the non-classical Maxwell-Cattaneo law on the Rayleigh-Bénard Magneto-convection in an electrically conducting micropolar fluid is studied using the Galerkin technique. The eigenvalue is obtained for free-free, rigid-free and rigid-rigid velocity boundary combinations with isothermal or adiabatic temperature on the spin-vanishing boundaries. The influences of various micropolar fluid parameters are analyzed on the onset of convection. The classical approach predicts an infinite speed for the propagation of heat. The present non-classical theory involves a wave type heat transport (SECOND SOUND) and does not suffer from the physically unacceptable drawback of infinite heat propagation speed. It is found that the results are noteworthy at short times and the critical eigenvalues are less than the classical ones.
基金supported by the National Science Foundation of United States (Grants IIP-1362146 and CMMI-1462749)
文摘Harmonic thermoelastic waves in helical strands with Maxwell–Cattaneo heat conduction areinvestigated analytically and numerically. The corresponding dispersion relation is a sixth-orderalgebraic equation, governed by six non-dimensional parameters: two thermoelastic couplingconstants, one chirality parameter, the ratio between extensional and torsional moduli, the Fouriernumber, and the dimensionless thermal relaxation. The behavior of the solutions is discussedfrom two perspectives with an asymptotic-numerical approach: (1) the effect of thermal relaxationon the elastic wave celerities, and (2) the effect of thermoelastic coupling on the thermal wavecelerities. With small wavenumbers, the adiabatic solution for Fourier helical strands is recovered.However, with large wavenumbers, the solutions behave differently depending on the thermalrelaxation and chirality. Due to thermoelastic coupling, the thermal wave celerity deviates from theclassical result of the speed of second sound.
文摘Our aim in this paper is to study on the Caginalp for a conserved phase-field with a polynomial potentiel of order 2<em>p</em> - 1. In this part, one treats the conservative version of the problem of generalized phase field. We consider a regular potential, more precisely a polynomial term of the order 2<em>p</em> - 1 with edge conditions of Dirichlet type. Existence and uniqueness are analyzed. More precisely, we precisely, we prove the existence and uniqueness of solutions.