期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Maxwell-Proca Fields in Relativistic Astrophysical Compact Objects
1
作者 Zoran Pazameta 《Journal of Modern Physics》 2013年第8期240-244,共5页
A general-relativistic model is formulated for hypothetical ultra-compact astrophysical objects composed of fluid infused with charges carrying a generalized massless Maxwell-Proca field. The chosen interior metric ha... A general-relativistic model is formulated for hypothetical ultra-compact astrophysical objects composed of fluid infused with charges carrying a generalized massless Maxwell-Proca field. The chosen interior metric has the algebraic property that;the fluid consequently possesses a negative pressure which halts gravitational collapse and establishes hydrostatic equilibrium. For an object containing a global distribution of non-interacting Maxwell-Proca charges, it is shown that physical considerations define the relationship between the charge density and the metric function uniquely, corroborating an earlier finding (for an electrostatic distribution of charge) that the interior field must increase with radial distance and the exterior field necessarily follows an inverse-square law. For the case of a charged fluid envelope surrounding a core of uncharged fluid, numerous solutions are possible. Assuming the interior field to vary as rn and requiring its strength to increase with radial distance while the charge density decreases, the range of values for n is found to be 0 n ≤ 1 (where n is not necessarily an integer) with n = 1 denoting the special case of a continuous distribution of charge. For both continuous and stratified charge distributions, the exterior field is found to decrease as 1/r2?regardless of the interior field’s dependence on r. 展开更多
关键词 GRAVITATION Compact Objects EINSTEIN EQUATIONS maxwell-proca FIELDS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部