超分辨率图像复原是病态反问题.采用Geman & McClure范数来构造数据拟合项,并且在经典的双边全变分(Bilateral total variation,BTV)正则化模型基础上,提出了一种能更有效利用方向信息的正则化模型,该模型根据迭代次数来自适应选择...超分辨率图像复原是病态反问题.采用Geman & McClure范数来构造数据拟合项,并且在经典的双边全变分(Bilateral total variation,BTV)正则化模型基础上,提出了一种能更有效利用方向信息的正则化模型,该模型根据迭代次数来自适应选择正则化参数.实验表明,该方法比采用L1范数和L2范数能更好地抑制噪声和保持边缘,在视觉效果和峰值信噪比(Peak signal noise ratio,PSNR)两个方面都有一定的提高.展开更多
文摘超分辨率图像复原是病态反问题.采用Geman & McClure范数来构造数据拟合项,并且在经典的双边全变分(Bilateral total variation,BTV)正则化模型基础上,提出了一种能更有效利用方向信息的正则化模型,该模型根据迭代次数来自适应选择正则化参数.实验表明,该方法比采用L1范数和L2范数能更好地抑制噪声和保持边缘,在视觉效果和峰值信噪比(Peak signal noise ratio,PSNR)两个方面都有一定的提高.