期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
昆虫物候模型研究进展
1
作者 景天忠 刘丽萍 谢雨龙 《环境昆虫学报》 CSCD 北大核心 2022年第3期606-616,共11页
物候是昆虫的重要生物学性状之一。物候模型预测昆虫发育事件的时间,在种群动态、物种分布和进化动态等科学研究以及农林业生产中具有重要作用。本文回顾了常见的物候模型及在昆虫学研究上的应用,包括热性能曲线、生物物理模型、基于概... 物候是昆虫的重要生物学性状之一。物候模型预测昆虫发育事件的时间,在种群动态、物种分布和进化动态等科学研究以及农林业生产中具有重要作用。本文回顾了常见的物候模型及在昆虫学研究上的应用,包括热性能曲线、生物物理模型、基于概率的模型、分布时滞模型、发育进度曲线、物候匹配模型和物候变迁模型。 展开更多
关键词 物候模型 Sharpe-Schoolfield模型 mckendrick-von Foerster模型 物候匹配 物候变迁
下载PDF
The Chapman-Richards Distribution and its Relationship to the Generalized Beta
2
作者 Jeffrey H.Gove Thomas B.Lynch Mark J.Ducey 《Forest Ecosystems》 SCIE CSCD 2019年第3期219-235,共17页
Background: The Chapman-Richards distribution is developed as a special case of the equilibrium solution to the McKendrick-Von Foerster equation. The Chapman-Richards distribution incorporates the vital rate assumptio... Background: The Chapman-Richards distribution is developed as a special case of the equilibrium solution to the McKendrick-Von Foerster equation. The Chapman-Richards distribution incorporates the vital rate assumptions of the Chapman-Richards growth function, constant mortality and recruitment into the mathematical form of the distribution. Therefore, unlike 'assumed' distribution models, it is intrinsically linked with the underlying vital rates for the forest area under consideration. Methods: It is shown that the Chapman-Richards distribution can be recast as a subset of the generalized beta distribution of the first kind, a rich family of assumed probability distribution models with known properties. These known properties for the generalized beta are then immediately available for the Chapman-Richards distribution, such as the form of the compatible basal area-size distribution. A simple two-stage procedure is proposed for the estimation of the model parameters and simulation experiments are conducted to validate the procedure for four different possible distribution shapes. Results: The simulations explore the efficacy of the two-stage estimation procedure;these cover the estimation of the growth equation and mortality-recruitment derives from the equilibrium assumption. The parameter estimates are shown to depend on both the sample size and the amount of noise imparted to the synthetic measurements. The results vary somewhat by distribution shape, with the smaller, noisier samples providing less reliable estimates of the vital rates and final distribution forms. Conclusions: The Chapman-Richards distribution in its original form, or recast as a generalized beta form, presents a potentially useful model integrating vital rates and stand diameters into a flexible family of resultant distributions shapes. The data requirements are modest, and parameter estimation is straightforward provided the minimal recommended sample sizes are obtained. 展开更多
关键词 Diameter DISTRIBUTIONS Chapman-Richards growth Generalized BETA DISTRIBUTION of the first KIND Maximum LIKELIHOOD mckendrick-von Foerster equation Physiologically structured population model Size-structured DISTRIBUTIONS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部