In this paper we explore the possibility of using the scientific computing method to obtain the inverse B-Transform of Oyelami and Ale [1]. Using some suitable conditions and the symbolic programming method in Maple 1...In this paper we explore the possibility of using the scientific computing method to obtain the inverse B-Transform of Oyelami and Ale [1]. Using some suitable conditions and the symbolic programming method in Maple 15 we obtained the asymptotic expansion for the inverse B-transform then used the residue theorem to obtain solutions of Impulsive Diffusion and Von-Foerster-Makendrick models. The results obtained suggest that drugs that are needed for prophylactic or chemotherapeutic purposing the concentration must not be allowed to oscillate about the steady state. Drugs that are to be used for immunization should not oscillate at steady state in order to have long residue effect in the blood. From Von-Foerster-Makendrick model, we obtained the conditions for population of the specie to attain super saturation level through the “dying effect” phenomenon ([2-4]). We used this phenomenon to establish that the environment cannot accommodate the population of the specie anymore which mean that a catastrophic stage t* is reached that only the fittest can survive beyond this regime (i.e. t > t*) and that there would be sharp competition for food, shelter and waste disposal etc.展开更多
Background: The Chapman-Richards distribution is developed as a special case of the equilibrium solution to the McKendrick-Von Foerster equation. The Chapman-Richards distribution incorporates the vital rate assumptio...Background: The Chapman-Richards distribution is developed as a special case of the equilibrium solution to the McKendrick-Von Foerster equation. The Chapman-Richards distribution incorporates the vital rate assumptions of the Chapman-Richards growth function, constant mortality and recruitment into the mathematical form of the distribution. Therefore, unlike 'assumed' distribution models, it is intrinsically linked with the underlying vital rates for the forest area under consideration. Methods: It is shown that the Chapman-Richards distribution can be recast as a subset of the generalized beta distribution of the first kind, a rich family of assumed probability distribution models with known properties. These known properties for the generalized beta are then immediately available for the Chapman-Richards distribution, such as the form of the compatible basal area-size distribution. A simple two-stage procedure is proposed for the estimation of the model parameters and simulation experiments are conducted to validate the procedure for four different possible distribution shapes. Results: The simulations explore the efficacy of the two-stage estimation procedure;these cover the estimation of the growth equation and mortality-recruitment derives from the equilibrium assumption. The parameter estimates are shown to depend on both the sample size and the amount of noise imparted to the synthetic measurements. The results vary somewhat by distribution shape, with the smaller, noisier samples providing less reliable estimates of the vital rates and final distribution forms. Conclusions: The Chapman-Richards distribution in its original form, or recast as a generalized beta form, presents a potentially useful model integrating vital rates and stand diameters into a flexible family of resultant distributions shapes. The data requirements are modest, and parameter estimation is straightforward provided the minimal recommended sample sizes are obtained.展开更多
文摘In this paper we explore the possibility of using the scientific computing method to obtain the inverse B-Transform of Oyelami and Ale [1]. Using some suitable conditions and the symbolic programming method in Maple 15 we obtained the asymptotic expansion for the inverse B-transform then used the residue theorem to obtain solutions of Impulsive Diffusion and Von-Foerster-Makendrick models. The results obtained suggest that drugs that are needed for prophylactic or chemotherapeutic purposing the concentration must not be allowed to oscillate about the steady state. Drugs that are to be used for immunization should not oscillate at steady state in order to have long residue effect in the blood. From Von-Foerster-Makendrick model, we obtained the conditions for population of the specie to attain super saturation level through the “dying effect” phenomenon ([2-4]). We used this phenomenon to establish that the environment cannot accommodate the population of the specie anymore which mean that a catastrophic stage t* is reached that only the fittest can survive beyond this regime (i.e. t > t*) and that there would be sharp competition for food, shelter and waste disposal etc.
基金partially supported by the USDA National Institute of Food and Agriculture,Mc Intire Stennis Project OKL0 3063the Division of Agricultural Sciences and Natural Resources at Oklahoma State Universityprovided by the USDA Forest Service,Research Joint Venture 17-JV-11242306045,Old-Growth Forest Dynamics and Structure,to Mark Ducey
文摘Background: The Chapman-Richards distribution is developed as a special case of the equilibrium solution to the McKendrick-Von Foerster equation. The Chapman-Richards distribution incorporates the vital rate assumptions of the Chapman-Richards growth function, constant mortality and recruitment into the mathematical form of the distribution. Therefore, unlike 'assumed' distribution models, it is intrinsically linked with the underlying vital rates for the forest area under consideration. Methods: It is shown that the Chapman-Richards distribution can be recast as a subset of the generalized beta distribution of the first kind, a rich family of assumed probability distribution models with known properties. These known properties for the generalized beta are then immediately available for the Chapman-Richards distribution, such as the form of the compatible basal area-size distribution. A simple two-stage procedure is proposed for the estimation of the model parameters and simulation experiments are conducted to validate the procedure for four different possible distribution shapes. Results: The simulations explore the efficacy of the two-stage estimation procedure;these cover the estimation of the growth equation and mortality-recruitment derives from the equilibrium assumption. The parameter estimates are shown to depend on both the sample size and the amount of noise imparted to the synthetic measurements. The results vary somewhat by distribution shape, with the smaller, noisier samples providing less reliable estimates of the vital rates and final distribution forms. Conclusions: The Chapman-Richards distribution in its original form, or recast as a generalized beta form, presents a potentially useful model integrating vital rates and stand diameters into a flexible family of resultant distributions shapes. The data requirements are modest, and parameter estimation is straightforward provided the minimal recommended sample sizes are obtained.