A UHV system specially designed for studying surface and interface atomic structure by MeV ion scattering and channeling is described. The vacuum in the UHV chamber is 133.332×10-10Pa. The chamber is equipped wit...A UHV system specially designed for studying surface and interface atomic structure by MeV ion scattering and channeling is described. The vacuum in the UHV chamber is 133.332×10-10Pa. The chamber is equipped with an ion gun used for sample cleaning, a translatable four-grid LEED-Auger system used for characterization of the crystal surface, and a three dimensional goniometer. The crystal preparation and cleaning procedure of Al(100) are presented. The surface peak intensity of Al(100)-【100】 and Al(100)- 【100】 has been measured by MeV ion channeling and scattering. The measured surface peak intensity was compared with that of Monte-Carlo simulation. The experimental results indicate that the thermal vibration amplitude of Al(100) surface atoms is 1.2 -1.3 times that of bulk atoms. The relaxation of first layer for Al(100) is less than -0.005nm.展开更多
文摘A UHV system specially designed for studying surface and interface atomic structure by MeV ion scattering and channeling is described. The vacuum in the UHV chamber is 133.332×10-10Pa. The chamber is equipped with an ion gun used for sample cleaning, a translatable four-grid LEED-Auger system used for characterization of the crystal surface, and a three dimensional goniometer. The crystal preparation and cleaning procedure of Al(100) are presented. The surface peak intensity of Al(100)-【100】 and Al(100)- 【100】 has been measured by MeV ion channeling and scattering. The measured surface peak intensity was compared with that of Monte-Carlo simulation. The experimental results indicate that the thermal vibration amplitude of Al(100) surface atoms is 1.2 -1.3 times that of bulk atoms. The relaxation of first layer for Al(100) is less than -0.005nm.