A new kind of combining forecasting model based on the generalized weighted functional proportional mean is proposed and the parameter estimation method of its weighting coefficients by means of the algorithm of quadr...A new kind of combining forecasting model based on the generalized weighted functional proportional mean is proposed and the parameter estimation method of its weighting coefficients by means of the algorithm of quadratic programming is given. This model has extensive representation. It is a new kind of aggregative method of group forecasting. By taking the suitable combining form of the forecasting models and seeking the optimal parameter, the optimal combining form can be obtained and the forecasting accuracy can be improved. The effectiveness of this model is demonstrated by an example.展开更多
This paper presents a graphical procedure for the squaring of a circle of any radius. This procedure, which is based on a novel application of the involute profile, when applied to a circle of arbitrary radius (using ...This paper presents a graphical procedure for the squaring of a circle of any radius. This procedure, which is based on a novel application of the involute profile, when applied to a circle of arbitrary radius (using only an unmarked ruler and a compass), produced a square equal in area to the given circle, which is 50 cm<sup>2</sup>. This result was a clear demonstration that not only is the construction valid for the squaring of a circle of any radius, but it is also capable of achieving absolute results (independent of the number pi (π), in a finite number of steps), when carried out with precision.展开更多
This paper presents a Method for the squaring of a circle (i.e., constructing a square having an area equal to that of a given circle). The construction, when applied to a given circle having an area of 12.7 cm<sup...This paper presents a Method for the squaring of a circle (i.e., constructing a square having an area equal to that of a given circle). The construction, when applied to a given circle having an area of 12.7 cm<sup>2</sup>, it produced a square having an area of 12.7 cm<sup>2</sup>, using only an unmarked ruler and a compass. This result was a clear demonstration that not only is the construction valid for the squaring of a circle but also for achieving absolute results (independent of the number pi (π) and in a finite number of steps) when carried out with precision.展开更多
文摘A new kind of combining forecasting model based on the generalized weighted functional proportional mean is proposed and the parameter estimation method of its weighting coefficients by means of the algorithm of quadratic programming is given. This model has extensive representation. It is a new kind of aggregative method of group forecasting. By taking the suitable combining form of the forecasting models and seeking the optimal parameter, the optimal combining form can be obtained and the forecasting accuracy can be improved. The effectiveness of this model is demonstrated by an example.
文摘This paper presents a graphical procedure for the squaring of a circle of any radius. This procedure, which is based on a novel application of the involute profile, when applied to a circle of arbitrary radius (using only an unmarked ruler and a compass), produced a square equal in area to the given circle, which is 50 cm<sup>2</sup>. This result was a clear demonstration that not only is the construction valid for the squaring of a circle of any radius, but it is also capable of achieving absolute results (independent of the number pi (π), in a finite number of steps), when carried out with precision.
文摘This paper presents a Method for the squaring of a circle (i.e., constructing a square having an area equal to that of a given circle). The construction, when applied to a given circle having an area of 12.7 cm<sup>2</sup>, it produced a square having an area of 12.7 cm<sup>2</sup>, using only an unmarked ruler and a compass. This result was a clear demonstration that not only is the construction valid for the squaring of a circle but also for achieving absolute results (independent of the number pi (π) and in a finite number of steps) when carried out with precision.