期刊文献+
共找到97,290篇文章
< 1 2 250 >
每页显示 20 50 100
Mean Shift跟踪算法创新实验项目设计
1
作者 王辉 王雪莹 于立君 《实验室科学》 2024年第1期12-16,共5页
视频跟踪算法是计算机视觉实践课程中比较受关注的实验项目。针对突变情况下传统Mean Shift跟踪算法无法实时准确跟踪的问题,设计了基于模板更新和线性预估的Mean Shift跟踪算法创新实验项目。在模板更新策略下,引入背景模板,通过将原... 视频跟踪算法是计算机视觉实践课程中比较受关注的实验项目。针对突变情况下传统Mean Shift跟踪算法无法实时准确跟踪的问题,设计了基于模板更新和线性预估的Mean Shift跟踪算法创新实验项目。在模板更新策略下,引入背景模板,通过将原目标模板和背景模板与设定的阈值进行比较来对干扰因素进行判定,当干扰因素判定目标受到遮挡时,引入线性预估方程进行目标位置预测,有效解决目标在遮挡情况下跟踪丢失的问题。通过对测试视频的跟踪效果和性能进行对比分析,验证了算法在突变情况下相较于传统算法具有更好的抗干扰能力。以算法创新设计为核心,通过开放性创新实验项目的选题、设计、答辩、反馈的闭环实验过程,有效提高了学生算法创新设计能力。 展开更多
关键词 mean shift跟踪算法 模板更新 线性预估 抗干扰
下载PDF
基于自适应核带宽度Mean Shift算法的单木识别研究
2
作者 马秀 陈伟 +2 位作者 徐雁南 张舒 王国宏 《森林工程》 北大核心 2024年第2期92-101,126,共11页
为提高多树种森林中单木识别的精度,利用机载激光雷达点云数据作为研究对象,提出一种基于自适应核带宽度Mean Shift算法的单木识别方法。该方法先采用直方图分析法分离树冠点云和冠层下点云,再采用基于二维增量网格投影的区域生长法,估... 为提高多树种森林中单木识别的精度,利用机载激光雷达点云数据作为研究对象,提出一种基于自适应核带宽度Mean Shift算法的单木识别方法。该方法先采用直方图分析法分离树冠点云和冠层下点云,再采用基于二维增量网格投影的区域生长法,估算单木冠幅有效半径,然后以单木冠幅有效半径作为自适应核带宽度,对树冠点云进行自适应Mean Shift聚类分析,得到树冠点簇,最后采用包络盒方法根据树冠点簇和树干点云的空间关系识别单木。试验结果表明,检测树与实际树的位置、树冠形态近似一致,单木召回率达到86.1%,准确率达到91.5%,高于2个对比试验的结果。研究证明设置的自适应核带宽度能够自动调整以反映局部树冠的实际大小,在多树种森林的单木识别中表现良好。 展开更多
关键词 激光雷达 单木识别 mean shift算法 核带宽度 自适应
下载PDF
Tunable spectral continuous shift of high-order harmonic generation in atoms by a plasmon-assisted shaping pulse
3
作者 王源 李玉龙 +7 位作者 乔月 高娜 郭福明 陈洲 赫兰海 杨玉军 赵曦 王俊 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期433-440,共8页
We delve into the phenomenon of high-order harmonic generation within a helium atom under the influence of a plasmon-assisted shaping pulse.Our findings reveal an intriguing manipulation of the frequency peak position... We delve into the phenomenon of high-order harmonic generation within a helium atom under the influence of a plasmon-assisted shaping pulse.Our findings reveal an intriguing manipulation of the frequency peak position in the harmonic emission by adjusting the absolute phase parameter within the frequency domain of the shaping pulse.This phenomenon holds potential significance for experimental setups necessitating precisely tuned single harmonics.Notably,we observe a modulated shift in the created harmonic photon energy,spanning an impressive range of 1.2 eV.This frequency peak shift is rooted in the asymmetry exhibited by the rising and falling edges of the laser pulse,directly influencing the position of the peak frequency emission.Our study quantifies the dependence of this tuning range and the asymmetry of the laser pulse,offering valuable insights into the underlying mechanisms driving this phenomenon.Furthermore,our investigation uncovers the emergence of semi-integer order harmonics as the phase parameter is altered.We attribute this discovery to the intricate interference between harmonics generated by the primary and secondary return cores.This observation introduces an innovative approach for generating semi-integer order harmonics,thus expanding our understanding of high-order harmonic generation.Ultimately,our work contributes to the broader comprehension of complex phenomena in laser-matter interactions and provides a foundation for harnessing these effects in various applications,particularly those involving precise spectral control and the generation of unique harmonic patterns. 展开更多
关键词 high-order harmonic semi-integer-order spectra shift inhomogeneous field
下载PDF
Calculation and Analysis of TVMS Considering Profile Shifts and Surface Wear Evolution Process of Spur Gear
4
作者 Wenzheng Liu Rupeng Zhu +1 位作者 Wenguang Zhou Jingjing Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期136-150,共15页
Profile shift is a highly effective technique for optimizing the performance of spur gear transmission systems.However,tooth surface wear is inevitable during gear meshing due to inadequate lubrication and long-term o... Profile shift is a highly effective technique for optimizing the performance of spur gear transmission systems.However,tooth surface wear is inevitable during gear meshing due to inadequate lubrication and long-term operation.Both profile shift and tooth surface wear(TSW)can impact the meshing characteristics by altering the involute tooth profile.In this study,a tooth stiffness model of spur gears that incorporates profile shift,TSW,tooth deformation,tooth contact deformation,fillet-foundation deformation,and gear body structure coupling is established.This model efficiently and accurately determines the time-varying mesh stiffness(TVMS).Additionally,an improved wear depth prediction method for spur gears is developed,which takes into consideration the mutually prime teeth numbers and more accurately reflects actual gear meshing conditions.Results show that consideration of the mutual prime of teeth numbers will have a certain impact on the TSW process.Furthermore,the finite element method(FEM)is employed to accurately verify the values of TVMS and load sharing ratio(LSR)of profile-shifted gears and worn gears.This study quantitatively analyzes the effect of profile shift on the surface wear process,which suggests that gear profile shift can partially alleviate the negative effects of TSW.The contribution of this study provides valuable insights into the design and maintenance of spur gear systems. 展开更多
关键词 Profile shift Tooth surface wear Structure coupling effect Improved wear depth prediction method TVms
下载PDF
改进Mean Shift目标跟踪算法实现 被引量:1
5
作者 刘银萍 夏金锋 +2 位作者 姜栋 徐龙 严飞 《电子测量技术》 北大核心 2023年第2期31-39,共9页
目标跟踪技术目前具有较好的应用前景,但在嵌入式处理平台中面临着实时性要求高、跟踪场景复杂等情况,加上受成本和嵌入式处理平台算力的限制,其处理效果往往很难满足现实需求,因此目标跟踪等图像处理技术的落地实现是当前研究的热点内... 目标跟踪技术目前具有较好的应用前景,但在嵌入式处理平台中面临着实时性要求高、跟踪场景复杂等情况,加上受成本和嵌入式处理平台算力的限制,其处理效果往往很难满足现实需求,因此目标跟踪等图像处理技术的落地实现是当前研究的热点内容。针对此问题,本文在FPGA平台实现了改进Mean Shift目标跟踪算法,该算法首先通过目标的概率密度分布梯度爬升来寻找目标,然后采用Kalman滤波的预测机制来预估下一帧搜寻计算的位置,从而减少Mean Shift的迭代次数。该算法实现充分利用FPGA能够并行和流水线处理的特点,实现了在1 920×1 080@60 Hz高清视频图像场景下的实时目标跟踪,其中Kalman滤波算法使其在较复杂场景下也能具备一定的抗遮挡干扰的能力。 展开更多
关键词 FPGA 目标跟踪 mean shift算法 KALMAN滤波
下载PDF
结合mean-shift与MST的K-means聚类算法 被引量:5
6
作者 徐沁 罗斌 《计算机工程》 CAS CSCD 2013年第12期204-210,共7页
针对初始点选择不当导致K-means陷入局部最小值问题,提出一种结合自适应mean-shift与最小生成树(MST)的K-means聚类算法。将数据对象投影到主成分分析(PCA)子空间,给出自适应mean-shift算法,并在PCA子空间内将数据向密度大的区域聚集,... 针对初始点选择不当导致K-means陷入局部最小值问题,提出一种结合自适应mean-shift与最小生成树(MST)的K-means聚类算法。将数据对象投影到主成分分析(PCA)子空间,给出自适应mean-shift算法,并在PCA子空间内将数据向密度大的区域聚集,再利用MST与图连通分量算法,找出数据的类别数和类标签,据此计算原始空间的密度峰值,并将其作为K-means聚类的初始中心点。对K-means的目标函数、聚类精度和运行时间进行比较,结果表明,该算法在较短的运行时间内能给出较优的全局解。 展开更多
关键词 聚类分析 K—means算法 初始中心点 meanshift算法 主成分分析 最小生成树
下载PDF
基于Mean-shift聚类算法的导航欺骗干扰源定位技术
7
作者 李东升 杨阳 《无线电工程》 北大核心 2023年第7期1678-1685,共8页
对导航干扰的现状进行了分析,针对北斗导航面临的威胁,对现有导航欺骗干扰源的定位方法和功率预测方法进行分析总结。针对现有技术水平的不足和未来战场的需求,提出了基于Mean-shift聚类算法的干扰源定位方法,对算法进行了分析,给出算... 对导航干扰的现状进行了分析,针对北斗导航面临的威胁,对现有导航欺骗干扰源的定位方法和功率预测方法进行分析总结。针对现有技术水平的不足和未来战场的需求,提出了基于Mean-shift聚类算法的干扰源定位方法,对算法进行了分析,给出算法实现与优化的过程,通过仿真与实验测试对算法的性能进行了分析。外场实测数据表明,提出的导航欺骗干扰定位算法具有较高的定位精度。提出的干扰源定位方法,将为导航对抗环境下的导航态势感知提供一种新的手段和方法。 展开更多
关键词 mean-shift聚类算法 欺骗干扰源 定位技术
下载PDF
基于Mean Shift算法的Camshift跟踪技术研究
8
作者 徐磊 《价值工程》 2015年第29期202-204,共3页
计算机算法是目标跟踪技术的核心部分,直接决定目标跟踪的精确性与稳定性。文章将研究基于Mean Shift算法的Camshift算法,并将仿真实验的结果进行比较,找到该算法在跟踪技术领域里的优缺点。
关键词 计算机视觉 目标跟踪 mean shift算法 CAMshift算法
下载PDF
加入跳跃连接的深度嵌入K-means聚类 被引量:1
9
作者 李顺勇 胥瑞 李师毅 《计算机系统应用》 2024年第1期11-21,共11页
现有的深度聚类算法大多采用对称的自编码器来提取高维数据的低维特征,但随着自编码器训练次数的不断增加,数据的低维特征空间在一定程度上发生了扭曲,这样得到的数据低维特征空间无法反映原始数据空间中潜在的聚类结构信息.为了解决上... 现有的深度聚类算法大多采用对称的自编码器来提取高维数据的低维特征,但随着自编码器训练次数的不断增加,数据的低维特征空间在一定程度上发生了扭曲,这样得到的数据低维特征空间无法反映原始数据空间中潜在的聚类结构信息.为了解决上述问题,本文提出了一种新的深度嵌入K-means算法(SDEKC).首先,在低维特征提取阶段,在对称的卷积自编码器中相对应的编码器与解码器之间以一定的权重加入两个跳跃连接,以减弱解码器对编码器的编码要求同时突出卷积自编码器的编码能力,这样可以更好地保留原始数据空间中蕴含的聚类结构信息;其次,在聚类阶段,通过一个标准正交变换矩阵将低维数据空间转换为一个新的揭示聚类结构信息的空间;最后,本文以端到端的方式采用贪婪算法迭代优化数据的低维表示及其聚类,在6个真实数据集上验证了本文提出新算法的有效性. 展开更多
关键词 跳跃连接 深度学习 卷积自编码器 嵌入K-means
下载PDF
基于蚁群算法的三支k-means聚类算法
10
作者 朱金 徐天杰 王平心 《江苏科技大学学报(自然科学版)》 CAS 2024年第3期63-69,共7页
在聚类分析中,三支k-means聚类算法较具有较强的处理边界不确定数据的能力,但仍然存在对初始聚类中心敏感的问题.通过将蚁群算法和三支k-means聚类算法相结合,给出了一种基于蚁群算法的三支k-means聚类算法来解决这一问题.利用蚁群算法... 在聚类分析中,三支k-means聚类算法较具有较强的处理边界不确定数据的能力,但仍然存在对初始聚类中心敏感的问题.通过将蚁群算法和三支k-means聚类算法相结合,给出了一种基于蚁群算法的三支k-means聚类算法来解决这一问题.利用蚁群算法中随机概率选择策略和信息素的正负反馈机制,动态调整权重的方法,对三支k-means聚类算法进行优化.在UCI数据集上实验证明,该方法对聚类结果的性能指标有所提高. 展开更多
关键词 三支k-means K-meanS聚类算法 聚类中心 蚁群算法
下载PDF
基于K-Means聚类与熵权TOPSIS法的岩石可爆性评价研究
11
作者 叶海旺 雷丙响 +5 位作者 周汉红 余梦豪 雷涛 王其洲 李宁 Doumbouya Sekou 《爆破》 CSCD 北大核心 2024年第2期112-119,共8页
露天矿山的爆破块度分布,直接影响到后续的采装、运输和破碎工作。为了控制石墨矿山不同区域爆破块度分布,基于K-means无监督聚类学习法与熵权TOPSIS评价法建立了一种新的岩石可爆性评价模型,选取岩石密度、动力能量耗散率、动态抗压强... 露天矿山的爆破块度分布,直接影响到后续的采装、运输和破碎工作。为了控制石墨矿山不同区域爆破块度分布,基于K-means无监督聚类学习法与熵权TOPSIS评价法建立了一种新的岩石可爆性评价模型,选取岩石密度、动力能量耗散率、动态抗压强度、平均应变率、脆性指数作为评价指标,通过熵权计算,发现岩石破碎程度受脆性指数影响最大,受平均应变率影响最小。将此模型应用于实际石墨矿山,可爆性分为10个等级,统计不同分级下的岩石平均破碎粒径,发现可爆性分级等级越高平均粒径越大,有明显的分级特征,验证了模型的有效性。从爆破石墨矿石岩体类型看,岩石可爆性从易到难排序为:片岩、片麻岩、变粒岩、混合岩。结合石墨矿石微观观测结果分析可知:岩性从片岩向混合岩转变,岩石内部石墨晶质呈下降趋势,石墨矿石可爆性等级也随之越来越高。岩石密度、能量耗散率、动态抗压强度之间呈线性正相关,岩石可爆性与平均应变率、脆性指数存在负相关性。研究成果为矿山矿岩可爆性评价提供了一条新思路,对露天矿山爆破块度优化具有一定的理论和实践指导意义。 展开更多
关键词 岩体爆破 可爆性评价 岩石力学 K-meanS算法 熵权TOPSIS评价
下载PDF
基于Mean Shift算法的卡尔曼滤波红外摄像头的目标跟踪系统设计
12
作者 殷启明 邓永和 +2 位作者 蒋宇洋 喻顺涛 肖悦之 《湖南工程学院学报(自然科学版)》 2023年第4期44-47,共4页
红外图像具有被动成像、抗干扰性强、目标识别能力强和全天候工作的特点,已经被广泛应用于军事侦察、监控和制导等领域.在背景干扰或者遮挡情况下传统的Mean Shift跟踪算法的跟踪存在不连续的问题.针对人体目标的活跃性和特殊性,设计一... 红外图像具有被动成像、抗干扰性强、目标识别能力强和全天候工作的特点,已经被广泛应用于军事侦察、监控和制导等领域.在背景干扰或者遮挡情况下传统的Mean Shift跟踪算法的跟踪存在不连续的问题.针对人体目标的活跃性和特殊性,设计一种在Mean Shift算法基础上结合卡尔曼滤波和Bhattacharyya系数遮挡判定因子的目标跟踪系统.当遮挡发生时,通过滤波器预测目标下一帧的位置,继续实现跟踪.测试结果表明:在背景干扰或者遮挡的情况下该跟踪系统可以有效地对目标进行准确跟踪. 展开更多
关键词 红外图像 目标跟踪 mean shift算法 卡尔曼滤波 遮挡判定因子
下载PDF
光伏波动平抑下改进K-means的电池储能动态分组控制策略 被引量:1
13
作者 余洋 陆文韬 +3 位作者 陈东阳 刘霡 夏雨星 郑晓明 《电力系统保护与控制》 EI CSCD 北大核心 2024年第7期1-11,共11页
针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并... 针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并网指令。其次,设计了改进侏儒猫鼬优化算法(improved dwarf mongoose optimizer,IDMO),并利用它对传统K-means聚类算法进行改进,加快了聚类速度。接着,制定了电池单元动态分组原则,并根据电池单元SOC利用改进K-means将其分为3个电池组。然后,设计了基于充放电函数的电池单元SOC一致性功率分配方法,并据此提出BESS双层功率分配策略,上层确定电池组充放电顺序及指令,下层计算电池单元充放电指令。对所提策略进行仿真验证,结果表明,所设计的IDMO具有更高的寻优精度及更快的寻优速度。所提BESS平抑光伏波动策略在有效平抑波动的同时,降低了BESS运行寿命损耗并提高了电池单元SOC的均衡性。 展开更多
关键词 电池储能系统 波动平抑 功率分配 改进侏儒猫鼬优化算法 改进K-means聚类算法
下载PDF
基于特征分箱和K-Means算法的用户行为分析方法
14
作者 殷丽凤 路建政 《云南民族大学学报(自然科学版)》 CAS 2024年第2期251-257,共7页
针对网购用户所产生的购物行为进行分析,首先通过数据处理构建客户关系管理模型(RFM模型),在此模型的基础上采用特征分箱法和K-Means聚类两种方法对用户进行细分,并对2种模型结果进行比较分析,讨论二者的差异性和具体的应用范围和意义.... 针对网购用户所产生的购物行为进行分析,首先通过数据处理构建客户关系管理模型(RFM模型),在此模型的基础上采用特征分箱法和K-Means聚类两种方法对用户进行细分,并对2种模型结果进行比较分析,讨论二者的差异性和具体的应用范围和意义.其中,基于特征分箱法的RFM模型将变量转化到相似的尺度上并将变量离散化,使得用户分类标签更加清晰,也可依据各类标签分类出不同类型的用户.K-Means算法通过轮廓系数评估聚类算法质量以至于选取最优K值.本文实验分析结果可为运营商提供更加可靠直观的数据,使得运营商可以根据不同用户的不同行为进行市场细分,进而进行精准营销和服务设置. 展开更多
关键词 特征分箱 K-meanS算法 用户行为 RFM模型 网购
下载PDF
基于k-means聚类算法的兴义维蚋幼虫龄数的估算
15
作者 赵娜 王毅 +4 位作者 杨曜铭 吴慧 修江帆 寻慧 杨明 《贵州医科大学学报》 CAS 2024年第8期1120-1127,共8页
目的探讨基于k-means聚类算法估算兴义维蚋幼虫的龄数,以明确虫龄与日龄及鳃斑发育阶段的关系。方法采集贵州青岩河流中兴义维蚋虫卵,于实验室的蚋类饲养系统中培育至幼虫,每日收集幼虫至大量化蛹,持续20 d;收集到幼虫1112头,于体视显... 目的探讨基于k-means聚类算法估算兴义维蚋幼虫的龄数,以明确虫龄与日龄及鳃斑发育阶段的关系。方法采集贵州青岩河流中兴义维蚋虫卵,于实验室的蚋类饲养系统中培育至幼虫,每日收集幼虫至大量化蛹,持续20 d;收集到幼虫1112头,于体视显微镜下测量头壳长(HCW)、后颊长(PGL)、上颚基横骨长(MPL)及体长(BL),观察不同虫龄幼虫的破卵器、鳃斑及性腺的形态学特征,并判断其龄期、分析虫龄与日龄和鳃斑发育关系;选取具有明显腮斑发育的兴义维蚋幼虫10头、制作石蜡切片,采用HE染色鉴定精巢和卵巢、辅助确认性别鉴定结果;采用k-means聚类方法划分形态计量学数据、利用Brooks-Dyar定律检测k-means聚类结果,R语言下行聚类与Brooks-Dyar定律检验、t检验等,根据拟合度分析判断兴义维蚋幼虫龄数。结果1112头兴义维蚋幼虫中有破卵器89头,出现鳃斑发育334头,6~7龄幼虫320头,有预蛹特征34头;Brooks-Dyar定律与破卵器、鳃斑形态特征显示7龄幼虫假设符合昆虫幼虫生长规律;组织学观察见幼虫精巢为椭圆形、体积大、外有几丁质层包裹,卵巢为长条形、体积小、后端有色素细胞包裹;鉴定6、7龄幼虫性别结果,仅7龄幼虫雌雄性PGL有差异(P<0.05);幼虫虫龄与日龄、鳃斑发育关系结果显示,约2~3 d对应1个幼虫生长龄期,第17天首见幼虫蛹化,6龄幼虫出现明显的鳃斑。结论兴义维蚋幼虫具7龄,实验室下幼虫发育约需3周,最短17 d;腮斑发育起始于6龄,7龄出现明显形态学特征。 展开更多
关键词 蚋科 组织学 性腺 龄数 形态计量学 K-meanS聚类
下载PDF
管制扇区运行稳度K-means聚类与分析
16
作者 岳仁田 杨果果 《中国安全科学学报》 CAS CSCD 北大核心 2024年第7期98-104,共7页
为更好地分析管制扇区运行存在的稳定亚安全状态和不稳定亚安全状态,使用K-means算法划分超容比(ECR)、滞留度和飞行姿态混合比3个管制扇区运行稳度评价指标聚类,确定管制扇区运行稳度最佳等级划分;聚类分析单一指标,获得各等级对应的... 为更好地分析管制扇区运行存在的稳定亚安全状态和不稳定亚安全状态,使用K-means算法划分超容比(ECR)、滞留度和飞行姿态混合比3个管制扇区运行稳度评价指标聚类,确定管制扇区运行稳度最佳等级划分;聚类分析单一指标,获得各等级对应的指标阈值,结合熵权法计算的指标权重,遵循隶属度最大原则,获取各时间段的管制扇区运行稳度等级,构建管制扇区运行稳度综合评价模型;选取厦门01号扇区的实际飞行数据,从稳度和趋度2个角度更加全面地分析管制扇区运行态势。结果表明:管制扇区运行稳度等级划分为3类时效果最好;稳度受空中交通流和管制状况的影响会随时间而变化,尤其7:30—9:15和20:00—21:00这2个时间段管制扇区运行稳度的变化最为明显,需引起管制员高度重视,提高空域运行安全。 展开更多
关键词 管制扇区 运行稳度 趋度 K-meanS聚类 综合评价
下载PDF
基于改进K-means与机器视觉的档案数据分析技术
17
作者 崔雨晴 《电子设计工程》 2024年第2期191-195,共5页
为了提升医疗信息系统对健康档案数据的分析效率,文中采用图像采集、降噪、配准与差分等技术提取医疗图像信息,进而有效提升信息系统的数据采集效率。同时还对传统的K-means算法加以改进,并提出了一种基于类间、类内距离的聚类初始化评... 为了提升医疗信息系统对健康档案数据的分析效率,文中采用图像采集、降噪、配准与差分等技术提取医疗图像信息,进而有效提升信息系统的数据采集效率。同时还对传统的K-means算法加以改进,并提出了一种基于类间、类内距离的聚类初始化评价指标体系(BWP),将其应用于采集到的档案数据中,以实现快速的聚类分析。将所提算法在CUDA计算平台上进行了实现,测试结果表明,该方法的聚类精度和运行效率较现有算法均有显著提升。此外,改进后K-means算法的正确聚类样本数量占比提升了4.88%,高于现有的主流指标体系,且当聚类数k的取值为16或32时,运行时间大幅降低。 展开更多
关键词 档案数据 K-meanS CUDA 机器视觉 图像处理
下载PDF
基于K-means聚类和特征空间增强的噪声标签深度学习算法 被引量:1
18
作者 吕佳 邱小龙 《智能系统学报》 CSCD 北大核心 2024年第2期267-277,共11页
深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样... 深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样本集赋予伪标签。然而,错误的伪标签以及训练样本数量不足的问题仍然限制着噪声标签学习算法性能的提升。为解决上述问题,提出基于K-means聚类和特征空间增强的噪声标签深度学习算法。首先,该算法利用K-means聚类算法对干净样本集进行标签聚类,并根据噪声样本集与聚类中心的距离大小筛选出难以分类的噪声样本,以提高训练样本的质量;其次,使用mixup算法扩充干净样本集和噪声样本集,以增加训练样本的数量;最后,采用特征空间增强算法抑制mixup算法新生成的噪声样本,从而提高网络的分类准确率。并在CIFAR10、CIFAR100、MNIST和ANIMAL-10共4个数据集上试验验证了该算法的有效性。 展开更多
关键词 噪声标签学习 深度学习 半监督学习 机器学习 神经网络 K-meanS聚类 特征空间增强 mixup算法
下载PDF
基于改进K-means的局部离群点检测方法
19
作者 周玉 夏浩 +1 位作者 岳学震 王培崇 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第4期66-77,共12页
离群点检测任务是指检测与正常数据在特征属性上存在显著差异的异常数据。大多数基于聚类的离群点检测方法主要从全局角度对数据集中的离群点进行检测,而对局部离群点的检测性能较弱。基于此,本文通过引入快速搜索和发现密度峰值方法改... 离群点检测任务是指检测与正常数据在特征属性上存在显著差异的异常数据。大多数基于聚类的离群点检测方法主要从全局角度对数据集中的离群点进行检测,而对局部离群点的检测性能较弱。基于此,本文通过引入快速搜索和发现密度峰值方法改进K-means聚类算法,提出了一种名为KLOD(local outlier detection based on improved K-means and least-squares methods)的局部离群点检测方法,以实现对局部离群点的精确检测。首先,利用快速搜索和发现密度峰值方法计算数据点的局部密度和相对距离,并将二者相乘得到γ值。其次,将γ值降序排序,利用肘部法则选择γ值最大的k个数据点作为K-means聚类算法的初始聚类中心。然后,通过K-means聚类算法将数据集聚类成k个簇,计算数据点在每个维度上的目标函数值并进行升序排列。接着,确定数据点的每个维度的离散程度并选择适当的拟合函数和拟合点,通过最小二乘法对升序排列的每个簇的每1维目标函数值进行函数拟合并求导,以获取变化率。最后,结合信息熵,将每个数据点的每个维度目标函数值乘以相应的变化率进行加权,得到最终的异常得分,并将异常值得分较高的top-n个数据点视为离群点。通过人工数据集和UCI数据集,对KLOD、LOF和KNN方法在准确度上进行仿真实验对比。结果表明KLOD方法相较于KNN和LOF方法具有更高的准确度。本文提出的KLOD方法能够有效改善K-means聚类算法的聚类效果,并且在局部离群点检测方面具有较好的精度和性能。 展开更多
关键词 离群点检测 K均值聚类 最小二乘法 密度峰值 目标函数值
下载PDF
基于马氏距离和Canopy改进K-means的交通聚类算法
20
作者 徐文进 马越 杜咏慧 《计算机与数字工程》 2024年第6期1630-1635,1649,共7页
在对交通数据的研究中经常会使用到聚类算法,且不同的聚类算法有不同的特性。K-means作为其中的一种聚类算法,具有较高的准确性和实用性,但其准确性易受主观选取K值和确定初始聚类中心的影响。为了优化聚类中心和K值的选取问题,提出MC-K... 在对交通数据的研究中经常会使用到聚类算法,且不同的聚类算法有不同的特性。K-means作为其中的一种聚类算法,具有较高的准确性和实用性,但其准确性易受主观选取K值和确定初始聚类中心的影响。为了优化聚类中心和K值的选取问题,提出MC-Kmeans算法。在所提方法中,首先通过Canopy算法选取K值,然后依据马氏距离的计算准则来确定初始聚类中心,最后将K值和聚类中心的值作为K-means的参数进行聚类。将MC-Kmeans算法应用到某时间段的纽约出租车交通数据中进行实际的验证。结果表明,与K-means算法比较,所提方法准确度更高,与实际交通情况更加相匹配,更能反映区域内的交通热点情况。 展开更多
关键词 K-meanS Canopy算法 马氏距离 交通
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部