The mean shift tracker has difficulty in tracking fast moving targets and suffers from tracking error accumulation problem. To overcome the limitations of the mean shift method, a new approach is proposed by integrati...The mean shift tracker has difficulty in tracking fast moving targets and suffers from tracking error accumulation problem. To overcome the limitations of the mean shift method, a new approach is proposed by integrating the mean shift algorithm and frame-difference methods. The rough position of the moving tar- get is first located by the direct frame-difference algorithm and three-frame-difference algorithm for the immobile camera scenes and mobile camera scenes, respectively. Then, the mean shift algorithm is used to achieve precise tracking of the target. Several tracking experiments show that the proposed method can effectively track first moving targets and overcome the tracking error accumulation problem.展开更多
This letter presents a novel Motion Vector (MV) recovery method which is based on Mean Shift (MS) procedure. According to motion continuity, MVs in local area should be similar. If projecting MV into 2-D feature space...This letter presents a novel Motion Vector (MV) recovery method which is based on Mean Shift (MS) procedure. According to motion continuity, MVs in local area should be similar. If projecting MV into 2-D feature space, local MVs in the feature space tend to cluster closely. To estimate the lost MVs in local area, recovery of lost MVs is modeled as clustering operation. MS procedure is applied to enforce each lost MV in the feature space to shift to the position where dominant MVs are gathered. Meanwhile, bandwidth estimation is statistically characterized by the variation of local standard de-viations; weighted value calculation is determined by estimation of overall standard deviation. Simu-lation results demonstrate their better performance when compared with other MV recovery ap-proaches and low computation cost.展开更多
In order to track ground moving target, a variable structure interacting multiple model (VS-IMM) using mean shift unscented particle filter (MS-UPF) is proposed in this paper. In model-conditioned filtering, sampl...In order to track ground moving target, a variable structure interacting multiple model (VS-IMM) using mean shift unscented particle filter (MS-UPF) is proposed in this paper. In model-conditioned filtering, sample particles obtained from the unscented particle filter are moved towards the maximal posterior density estimation of the target state through mean shift. On the basis of stop model in VS-IMM, hide model is proposed. Once the target is obscured by terrain, the prediction at prior time is used instead of the measurement at posterior time; in addition, the road model set used is not changed. A ground moving target indication (GMTI) radar is employed in three common simulation scenarios of ground target: entering or leaving a road, crossing a junction and no measurement. Two evaluation indexes, root mean square error (RMSE) and average normalized estimation error squared (ANEES), are used. The results indicate that when the road on which the target moving changes, the tracking accuracy is effectively improved in the proposed algorithm. Moreover, track interruption could be avoided if the target is moving too slowly or masked by terrain.展开更多
针对传统Mean shift跟踪算法对空中运动目标跟踪效果不理想的问题,提出了基于Mean shift算法和归一化转动惯量(Normalized moment of inertia,NMI)特征的目标跟踪算法.算法中引入了目标NMI特征,建立了基于虚警概率最小原则和相似度二级...针对传统Mean shift跟踪算法对空中运动目标跟踪效果不理想的问题,提出了基于Mean shift算法和归一化转动惯量(Normalized moment of inertia,NMI)特征的目标跟踪算法.算法中引入了目标NMI特征,建立了基于虚警概率最小原则和相似度二级判决门限的跟踪策略,对目标模型进行更新.同时利用卡尔曼滤波,在目标被遮挡后进行估计预测.实验表明该算法在空中运动目标存在较大形变、被遮挡等情况下,能够进行实时、稳定跟踪.展开更多
基金supported by the Fundamental Research Funds for the Central Universities Project(CDJZR10170010)
文摘The mean shift tracker has difficulty in tracking fast moving targets and suffers from tracking error accumulation problem. To overcome the limitations of the mean shift method, a new approach is proposed by integrating the mean shift algorithm and frame-difference methods. The rough position of the moving tar- get is first located by the direct frame-difference algorithm and three-frame-difference algorithm for the immobile camera scenes and mobile camera scenes, respectively. Then, the mean shift algorithm is used to achieve precise tracking of the target. Several tracking experiments show that the proposed method can effectively track first moving targets and overcome the tracking error accumulation problem.
基金Supported by the National Natural Science Foundation of China (No. 60672134)
文摘This letter presents a novel Motion Vector (MV) recovery method which is based on Mean Shift (MS) procedure. According to motion continuity, MVs in local area should be similar. If projecting MV into 2-D feature space, local MVs in the feature space tend to cluster closely. To estimate the lost MVs in local area, recovery of lost MVs is modeled as clustering operation. MS procedure is applied to enforce each lost MV in the feature space to shift to the position where dominant MVs are gathered. Meanwhile, bandwidth estimation is statistically characterized by the variation of local standard de-viations; weighted value calculation is determined by estimation of overall standard deviation. Simu-lation results demonstrate their better performance when compared with other MV recovery ap-proaches and low computation cost.
文摘In order to track ground moving target, a variable structure interacting multiple model (VS-IMM) using mean shift unscented particle filter (MS-UPF) is proposed in this paper. In model-conditioned filtering, sample particles obtained from the unscented particle filter are moved towards the maximal posterior density estimation of the target state through mean shift. On the basis of stop model in VS-IMM, hide model is proposed. Once the target is obscured by terrain, the prediction at prior time is used instead of the measurement at posterior time; in addition, the road model set used is not changed. A ground moving target indication (GMTI) radar is employed in three common simulation scenarios of ground target: entering or leaving a road, crossing a junction and no measurement. Two evaluation indexes, root mean square error (RMSE) and average normalized estimation error squared (ANEES), are used. The results indicate that when the road on which the target moving changes, the tracking accuracy is effectively improved in the proposed algorithm. Moreover, track interruption could be avoided if the target is moving too slowly or masked by terrain.
文摘针对传统Mean shift跟踪算法对空中运动目标跟踪效果不理想的问题,提出了基于Mean shift算法和归一化转动惯量(Normalized moment of inertia,NMI)特征的目标跟踪算法.算法中引入了目标NMI特征,建立了基于虚警概率最小原则和相似度二级判决门限的跟踪策略,对目标模型进行更新.同时利用卡尔曼滤波,在目标被遮挡后进行估计预测.实验表明该算法在空中运动目标存在较大形变、被遮挡等情况下,能够进行实时、稳定跟踪.