1 Introduction Morphological analysis on the planform migration structure of meandering river is an important basis for the reconstruction of evolution of paleochannel.Besides,it is a significant method for restoratio...1 Introduction Morphological analysis on the planform migration structure of meandering river is an important basis for the reconstruction of evolution of paleochannel.Besides,it is a significant method for restoration of rivers through the展开更多
Reconstructing meandering paleo-channels is attracting global research attention. We implemented a novel method by comprehensively integrating migration models and sedimentary structures. Firstly, the migration archit...Reconstructing meandering paleo-channels is attracting global research attention. We implemented a novel method by comprehensively integrating migration models and sedimentary structures. Firstly, the migration architectures of the corresponding characteristics in planform and cross-sectional models were summarised as expansion, translation, expansion and translation, expansion and downstream rotation, constriction and downstream rotation, and expansion and countercurrent rotation models. Secondly, full continuous core data from 270 dense drilling wells were collected from the Daqing Oil Field in the Songliao Basin, China, providing information on rock textures, sedimentary cycles, and boundary information for the two layers being studied. Through a comprehensive analysis of dense drill cores and logging data, the abandoned channels and the initial and final channel centrelines were identified. Consequently, four profiles, including one longitudinal and three transverse sections, were constructed to reveal the cross-sectional structures and planform migration architecture. Profile interpretation revealed the evolution from the initial channel centreline to the final centreline. Using a method of rational interpolation, we were able to reconstruct the migration architecture of the meandering channels. The results showed that the average ancient bankfull width(Wc) was approximately 100 m, a single meandering belt was800 m, the radius of the curvature was 250 m, the length of the channel bend was 700 m, the average meander wavelength was 1300 m, the sinuosity was 3.0, and the annual average discharge rate was 450 m3/s. Furthermore, we compared the results from empirical equations, which verified that our reconstruction is both feasible and potentially widely applicable.展开更多
In order to explore the influence of sandstone architecture on waterflooding mechanisms using the architecture method,and taking as an example the M-I layer of the Kumkol oilfield in the South Turgay Basin,Kazakhstan,...In order to explore the influence of sandstone architecture on waterflooding mechanisms using the architecture method,and taking as an example the M-I layer of the Kumkol oilfield in the South Turgay Basin,Kazakhstan,we portrayed the architecture features of different types of sandstones and quantitatively characterized heterogeneities in a single sand body in meandering river facies.Based on the waterflooding characteristics of point bar sand and overbank sand according to waterflooded interpretation results in 367 wells and numerical simulation results of well groups,we finally analyzed the remaining oil potential of the meandering river sandstone and pointed out its development directions at the high water cut stage.The result shows that because lateral accretion shale beds are developed inside single sand bodies,the point bar sand is a semi-connected body.The overbank sand is thin sandstone with poor connectivity,small area and fast lateral changes.The heterogeneity of the overbank sand is stronger than the point bar sand.The sandstone architectures control the waterflooding characteristics.In meandering river sandstones,the bottom of the point bar sand is strongly waterflooded,while the top of the point bar sand and most of the overbank sand are only weakly waterflooded or unflooded.The thickness percentage of unflooded zone and weakly waterflooded zone in point bar sand is 40%,and the remaining oil in its top part is the main direction for future development.展开更多
Sedimentary facies study is an important method in describing the property and distribution of reservoir. 3D geological modeling is a powerful tool in 3D characterization of geological bodies. By combining the sedimen...Sedimentary facies study is an important method in describing the property and distribution of reservoir. 3D geological modeling is a powerful tool in 3D characterization of geological bodies. By combining the sedimentary facies study with 3D geological modeling to generate 3D sedimentary facies model, the 3D geometry and distribution feature of sand bodies can be more accurately characterized, particularly in 3D view. In Liuchu oilfield of Jizhong depression, the Ed2IV formation was recognized as meandering river deposition facies and five sedimentary facies were identified, which include point bar sand, levee, channel margin, abandoned channel and floodplain. All the 24 sand body facies in Ed2IV were mapped and the 3D sedimentary facies model established based on 2D facies maps. The result shows that the 3D sedimentary facies model is well matched for the research result of sedimentary facies. Being an extension of traditional sedimentary study, the 3D sedimentary facies model can be used to describe the 3D geometry and distribution orders of a single sand body more reliably and more accurately.展开更多
In order to solve dynamic Problems caused by the internal structure of fluvial reservoir,it is necessa-ry to study the fine anatomy of Point bar. Taking Minghuazhen Formation in the northern block of Q oilfield, Bohai...In order to solve dynamic Problems caused by the internal structure of fluvial reservoir,it is necessa-ry to study the fine anatomy of Point bar. Taking Minghuazhen Formation in the northern block of Q oilfield, Bohai Sea as an examPle,the authors studied identification marks,distribution Pattern and scale of Point bar based on coring,logging and dynamic data. The results show that the length of Point bar and the width of lateral accretion body are 713-911 m and 71-111m,resPectively;the diP angle and the thickness of lateral accretion bedding are 3. 5o-5. 9o and 0. 1-0. 5 m. The lateral accretion beddings are the key factor affecting the seePage velocity of the tracer.展开更多
Unlike other river patterns, the anabranched pattern is rarely studied before although Lane has already mentioned about it in 1957. The most eminent features of the anabranched pattern are that there are always some i...Unlike other river patterns, the anabranched pattern is rarely studied before although Lane has already mentioned about it in 1957. The most eminent features of the anabranched pattern are that there are always some islands developed in the alluvial rivers and thus several stable flow courses always exist correspondingly.This is quite different from the unstable islands and randomly changed flow courses in braided rivers. Since the anabranched river pattern is the most typical one in the middle and lower reaches of the Yangtze River (Changjiang) as well as in many other rivers in China, a systematic study on the formation cause of the anabranched river pattern has been made in recent years, including field observations, modeling experiments in four river models under different boundary conditions, the analyses of river pattern formation and transformation etc. In the present paper, some of the detailed results obained by the writer will be discussed.展开更多
Bed morphology is the result of a dynamic response to a complex meandering river system. It is an important factor for the further development of river. Based on the meandering river characterized by a large depth-to-...Bed morphology is the result of a dynamic response to a complex meandering river system. It is an important factor for the further development of river. Based on the meandering river characterized by a large depth-to-width ratio, a theoretical model is established with the coupling of Navier-Stokes (N-S)~ sediment transport, and bed deformation equations. The flow characteristics and bed response of river are obtained with the perturbation method. The research results show that, under the effect of two- dimensional flow disturbance, the bars and pools present the regular response. For a given sinuousness, the amplitude of the bed response can be used as a criterion to judge the bedform stability. The effects of the Reynolds number, disturbance wavenumber, sinuousness, and bed morphology gradient on the bed response development are described.展开更多
Elucidating the influence of dams on fluvial processes can inform river protection and basin management. However, relatively few studies have focused on how multiple factors interact to affect the morphological evolut...Elucidating the influence of dams on fluvial processes can inform river protection and basin management. However, relatively few studies have focused on how multiple factors interact to affect the morphological evolution of meandering reaches. Using hydrological and topographical data, we analyzed the factors that influence and regulate the meandering reaches downstream the Three Gorges Dam (TGD). Our conclusions are as follows. (1) The meandering reaches can be classified into two types based on their evolution during the pre-dam period: G1 reaches, characterized by convex point bar erosion and concave channel deposition (CECD), and G2 reaches, characterized by convex point bar deposition and concave channel erosion (CDCE). Both reach types exhibited CECD features during the post-dam period, (2) Flow processes and sediment transport are the factors that caused serious erosion of the low beaches located in the convex point bars. However, changes in the river regime, river boundaries and jacking of Dongting Lake do not act as primary controls on the morphological evolution of the meandering reaches. (3) Flood discharges ranging from 20,000 to 25,000 m^3/s result in greater erosion of convex point bars. The point bars become scoured if the durations of these flows, which are close to bankfull discharge, exceed 20 days. In addition, the reduction in bedload causes the decreasing of point bar siltation in the water-falling period. (4) During the post-dam period, flood abatement, the increased duration of discharges ranging from 20,000 to 25,000 m^3/s, and a significant reduction in sediment transport are the main factors that caused meandering reaches to show CECD features. Our results are relevant to other meandering reaches, where they can inform estimates of riverbed change, river management strategies and river protection.展开更多
We identified and mapped ecotourism areas in the First Meander of the Yellow River (FMYR) by incorporating tourist preferences, and regional division was also conducted. Considering wetland protection and local natu...We identified and mapped ecotourism areas in the First Meander of the Yellow River (FMYR) by incorporating tourist preferences, and regional division was also conducted. Considering wetland protection and local natural worship, we identiifed available ecotourism areas and used GIS to overlay six layers of the criteria to generate a suitability map of available areas. This process incorporated the opinions of 158 tourists to weight each criterion. Available areas were classiifed into ifve levels of suitability, with class I being the least suitable for ecotourism and class V being the most suitable. Distance from water area was found to be the most important criterion, and presence of forest to be the least important. The results show that a majority of the FMYR is class Ⅱ, Ⅲ or Ⅳ. FMYR was further divided into ifve sub-regions, and it is clear that the particular ecological characteristics and service functions of each sub-region warrant particular development. This study provides useful insights for tourism planners, local managers and visitors.展开更多
The 270 km long section of the Upper Yellow River at the First Great Bend is comprised of single channel and multiple channel systems that alternate among anastomosing, anabranching, meandering and braided reaches. Th...The 270 km long section of the Upper Yellow River at the First Great Bend is comprised of single channel and multiple channel systems that alternate among anastomosing, anabranching, meandering and braided reaches. The sequence of downstream pattern changes is characterized as: anastomosing-anabranching, anabranching-meandering, meandering-braided and braided-meandering. Remote sensing images, DEM data and field investigations are used to assess ahd interpret controls on these reach transitions. Channel slope and bed sediment size are key determinants of transitions in channel planform. Anas- tomosing reaches have a relatively high bed slope (0.86‰) and coarser sediment bed material (d50 = 3.5 mm). In contrast, meandering reaches have a low slope (0.30‰) and fine sediment bed material (d50 = 0.036 mm). The transition from a meandering to braided pattern is characterized by an increase in channel width-depth ratio, indicating the important role of bank strength (i.e. cohesive versus non-cohesive versus channel boundaries). Interestingly, the braided-meandering and meandering-braided transitions are coincident with variable flow inputs from tributary rivers (Baihe and Heihe rivers respectively). Theoretical analysis of the meandering-braided transition highlights the key control of channel width-depth ratio as a determinant of channel planform.展开更多
In a meandering fiver, a certain scale of turbulent vortex dominates the development of fiver morphology, making the river bend with s particular curvature. This kind of vortex is denoted as "bend-forming vortex". T...In a meandering fiver, a certain scale of turbulent vortex dominates the development of fiver morphology, making the river bend with s particular curvature. This kind of vortex is denoted as "bend-forming vortex". The coordinated relationship of bend-forming vortex and meandering fiver channel is then known as "self-adaption feature" of rivers. With these two concepts, this paper investigated the stability and self-adaption character of coherent vortex in the U-shape river bend with a constant curvature. On the basis of fluid mechanics theory and in consideration of turbulent coherent vortex as disturbance, the growth rate and the wave number response range of coherent vortex in meandering rivers with different curvatures were calculated in this paper. Moreover, the responses of different scales of coherent turbulence structure to river bend parameters were analyzed to explain the mechanism of fiver bend maintenance. These methods could provide a theoretical basis for further investigation on fiver meandering.展开更多
Large-sczde structure of river flow is the main driving force for bed erosion-deposition and bank delbrmation. The structure shapes and retains a corresponding hydraulic geometry form. Therefore, the most stable flow ...Large-sczde structure of river flow is the main driving force for bed erosion-deposition and bank delbrmation. The structure shapes and retains a corresponding hydraulic geometry form. Therefore, the most stable flow structure is the probable natural river plane formation. Natural coordinate transformation and perturbation methods were adapted to deform the governing equations of sine-generated river basic flow and disturbance flow independently. The stability and retention of perturbation waves were analyzed in our model to explain why meandering rivers followed a certain type of tqow path. Computation results showed that all types of perturbation waves in meandering rivers were most stable when the meandering wave number was about 0.39-0.41. We believe that this type of stable flow structure shaped a certain meandering river. The statistical average length-width ratios of Yalin, Habib and da Silva and Leopold and Wolman somewhat confirmed our most stable river mean- dering wave number. In some ways, meandering rivers always tend to diminish internal turbulence intensity.展开更多
基金supported by National Natural Sciences Fund (No. 41372125)Fund of Ministry of Education of Hubei Province (No. Q20121210)
文摘1 Introduction Morphological analysis on the planform migration structure of meandering river is an important basis for the reconstruction of evolution of paleochannel.Besides,it is a significant method for restoration of rivers through the
基金supported by the National Natural Science Foundation of China (No. 41372125)National Science and Technology Major Project (No. 2016ZX05063002-006)
文摘Reconstructing meandering paleo-channels is attracting global research attention. We implemented a novel method by comprehensively integrating migration models and sedimentary structures. Firstly, the migration architectures of the corresponding characteristics in planform and cross-sectional models were summarised as expansion, translation, expansion and translation, expansion and downstream rotation, constriction and downstream rotation, and expansion and countercurrent rotation models. Secondly, full continuous core data from 270 dense drilling wells were collected from the Daqing Oil Field in the Songliao Basin, China, providing information on rock textures, sedimentary cycles, and boundary information for the two layers being studied. Through a comprehensive analysis of dense drill cores and logging data, the abandoned channels and the initial and final channel centrelines were identified. Consequently, four profiles, including one longitudinal and three transverse sections, were constructed to reveal the cross-sectional structures and planform migration architecture. Profile interpretation revealed the evolution from the initial channel centreline to the final centreline. Using a method of rational interpolation, we were able to reconstruct the migration architecture of the meandering channels. The results showed that the average ancient bankfull width(Wc) was approximately 100 m, a single meandering belt was800 m, the radius of the curvature was 250 m, the length of the channel bend was 700 m, the average meander wavelength was 1300 m, the sinuosity was 3.0, and the annual average discharge rate was 450 m3/s. Furthermore, we compared the results from empirical equations, which verified that our reconstruction is both feasible and potentially widely applicable.
基金funded by the Major Program of PetroChina(2011E-2506)
文摘In order to explore the influence of sandstone architecture on waterflooding mechanisms using the architecture method,and taking as an example the M-I layer of the Kumkol oilfield in the South Turgay Basin,Kazakhstan,we portrayed the architecture features of different types of sandstones and quantitatively characterized heterogeneities in a single sand body in meandering river facies.Based on the waterflooding characteristics of point bar sand and overbank sand according to waterflooded interpretation results in 367 wells and numerical simulation results of well groups,we finally analyzed the remaining oil potential of the meandering river sandstone and pointed out its development directions at the high water cut stage.The result shows that because lateral accretion shale beds are developed inside single sand bodies,the point bar sand is a semi-connected body.The overbank sand is thin sandstone with poor connectivity,small area and fast lateral changes.The heterogeneity of the overbank sand is stronger than the point bar sand.The sandstone architectures control the waterflooding characteristics.In meandering river sandstones,the bottom of the point bar sand is strongly waterflooded,while the top of the point bar sand and most of the overbank sand are only weakly waterflooded or unflooded.The thickness percentage of unflooded zone and weakly waterflooded zone in point bar sand is 40%,and the remaining oil in its top part is the main direction for future development.
文摘Sedimentary facies study is an important method in describing the property and distribution of reservoir. 3D geological modeling is a powerful tool in 3D characterization of geological bodies. By combining the sedimentary facies study with 3D geological modeling to generate 3D sedimentary facies model, the 3D geometry and distribution feature of sand bodies can be more accurately characterized, particularly in 3D view. In Liuchu oilfield of Jizhong depression, the Ed2IV formation was recognized as meandering river deposition facies and five sedimentary facies were identified, which include point bar sand, levee, channel margin, abandoned channel and floodplain. All the 24 sand body facies in Ed2IV were mapped and the 3D sedimentary facies model established based on 2D facies maps. The result shows that the 3D sedimentary facies model is well matched for the research result of sedimentary facies. Being an extension of traditional sedimentary study, the 3D sedimentary facies model can be used to describe the 3D geometry and distribution orders of a single sand body more reliably and more accurately.
基金Supported by Project of Fine Reservoir Description Technology of Heavy Oil Reservoir(No.1507)
文摘In order to solve dynamic Problems caused by the internal structure of fluvial reservoir,it is necessa-ry to study the fine anatomy of Point bar. Taking Minghuazhen Formation in the northern block of Q oilfield, Bohai Sea as an examPle,the authors studied identification marks,distribution Pattern and scale of Point bar based on coring,logging and dynamic data. The results show that the length of Point bar and the width of lateral accretion body are 713-911 m and 71-111m,resPectively;the diP angle and the thickness of lateral accretion bedding are 3. 5o-5. 9o and 0. 1-0. 5 m. The lateral accretion beddings are the key factor affecting the seePage velocity of the tracer.
文摘Unlike other river patterns, the anabranched pattern is rarely studied before although Lane has already mentioned about it in 1957. The most eminent features of the anabranched pattern are that there are always some islands developed in the alluvial rivers and thus several stable flow courses always exist correspondingly.This is quite different from the unstable islands and randomly changed flow courses in braided rivers. Since the anabranched river pattern is the most typical one in the middle and lower reaches of the Yangtze River (Changjiang) as well as in many other rivers in China, a systematic study on the formation cause of the anabranched river pattern has been made in recent years, including field observations, modeling experiments in four river models under different boundary conditions, the analyses of river pattern formation and transformation etc. In the present paper, some of the detailed results obained by the writer will be discussed.
文摘Bed morphology is the result of a dynamic response to a complex meandering river system. It is an important factor for the further development of river. Based on the meandering river characterized by a large depth-to-width ratio, a theoretical model is established with the coupling of Navier-Stokes (N-S)~ sediment transport, and bed deformation equations. The flow characteristics and bed response of river are obtained with the perturbation method. The research results show that, under the effect of two- dimensional flow disturbance, the bars and pools present the regular response. For a given sinuousness, the amplitude of the bed response can be used as a criterion to judge the bedform stability. The effects of the Reynolds number, disturbance wavenumber, sinuousness, and bed morphology gradient on the bed response development are described.
基金National Natural Science Foundation of China, No.51479146 Doctoral Foundation of Northwest A&F University No.2452015337 National Key Research and Development Plan, No.2016YFC0402303, No.2016YFC0402101
文摘Elucidating the influence of dams on fluvial processes can inform river protection and basin management. However, relatively few studies have focused on how multiple factors interact to affect the morphological evolution of meandering reaches. Using hydrological and topographical data, we analyzed the factors that influence and regulate the meandering reaches downstream the Three Gorges Dam (TGD). Our conclusions are as follows. (1) The meandering reaches can be classified into two types based on their evolution during the pre-dam period: G1 reaches, characterized by convex point bar erosion and concave channel deposition (CECD), and G2 reaches, characterized by convex point bar deposition and concave channel erosion (CDCE). Both reach types exhibited CECD features during the post-dam period, (2) Flow processes and sediment transport are the factors that caused serious erosion of the low beaches located in the convex point bars. However, changes in the river regime, river boundaries and jacking of Dongting Lake do not act as primary controls on the morphological evolution of the meandering reaches. (3) Flood discharges ranging from 20,000 to 25,000 m^3/s result in greater erosion of convex point bars. The point bars become scoured if the durations of these flows, which are close to bankfull discharge, exceed 20 days. In addition, the reduction in bedload causes the decreasing of point bar siltation in the water-falling period. (4) During the post-dam period, flood abatement, the increased duration of discharges ranging from 20,000 to 25,000 m^3/s, and a significant reduction in sediment transport are the main factors that caused meandering reaches to show CECD features. Our results are relevant to other meandering reaches, where they can inform estimates of riverbed change, river management strategies and river protection.
基金National Natural Science Fund of China(No.4130141,41171435)Zhejiang Provincial Natural Science Foundation of China(No.LY13D010007)
文摘We identified and mapped ecotourism areas in the First Meander of the Yellow River (FMYR) by incorporating tourist preferences, and regional division was also conducted. Considering wetland protection and local natural worship, we identiifed available ecotourism areas and used GIS to overlay six layers of the criteria to generate a suitability map of available areas. This process incorporated the opinions of 158 tourists to weight each criterion. Available areas were classiifed into ifve levels of suitability, with class I being the least suitable for ecotourism and class V being the most suitable. Distance from water area was found to be the most important criterion, and presence of forest to be the least important. The results show that a majority of the FMYR is class Ⅱ, Ⅲ or Ⅳ. FMYR was further divided into ifve sub-regions, and it is clear that the particular ecological characteristics and service functions of each sub-region warrant particular development. This study provides useful insights for tourism planners, local managers and visitors.
基金International Science & Technology Cooperation Program of China, No.2011DFA20820 No.2011DFG93160+1 种基金 Tsinghua University, No.20121080027 National Natural Science Foundation of China, No.51209010 Acknowledgments We would like to thank Professor Huang Heqing for his helpful guidance in finalizing the paper.
文摘The 270 km long section of the Upper Yellow River at the First Great Bend is comprised of single channel and multiple channel systems that alternate among anastomosing, anabranching, meandering and braided reaches. The sequence of downstream pattern changes is characterized as: anastomosing-anabranching, anabranching-meandering, meandering-braided and braided-meandering. Remote sensing images, DEM data and field investigations are used to assess ahd interpret controls on these reach transitions. Channel slope and bed sediment size are key determinants of transitions in channel planform. Anas- tomosing reaches have a relatively high bed slope (0.86‰) and coarser sediment bed material (d50 = 3.5 mm). In contrast, meandering reaches have a low slope (0.30‰) and fine sediment bed material (d50 = 0.036 mm). The transition from a meandering to braided pattern is characterized by an increase in channel width-depth ratio, indicating the important role of bank strength (i.e. cohesive versus non-cohesive versus channel boundaries). Interestingly, the braided-meandering and meandering-braided transitions are coincident with variable flow inputs from tributary rivers (Baihe and Heihe rivers respectively). Theoretical analysis of the meandering-braided transition highlights the key control of channel width-depth ratio as a determinant of channel planform.
基金supported by the National Natural Science Foundation for Innovative Research Groups of China (Grant No.51021004)the National Natural Science Foundation of China (Grant Nos.50979066,50809045)
文摘In a meandering fiver, a certain scale of turbulent vortex dominates the development of fiver morphology, making the river bend with s particular curvature. This kind of vortex is denoted as "bend-forming vortex". The coordinated relationship of bend-forming vortex and meandering fiver channel is then known as "self-adaption feature" of rivers. With these two concepts, this paper investigated the stability and self-adaption character of coherent vortex in the U-shape river bend with a constant curvature. On the basis of fluid mechanics theory and in consideration of turbulent coherent vortex as disturbance, the growth rate and the wave number response range of coherent vortex in meandering rivers with different curvatures were calculated in this paper. Moreover, the responses of different scales of coherent turbulence structure to river bend parameters were analyzed to explain the mechanism of fiver bend maintenance. These methods could provide a theoretical basis for further investigation on fiver meandering.
基金supported by the National Natural Science Foundation of China(Grant Nos.51279124,50979066,51009105)the Natural Science Foundation of Tianjin(Grant No.12JCQNJC05600)
文摘Large-sczde structure of river flow is the main driving force for bed erosion-deposition and bank delbrmation. The structure shapes and retains a corresponding hydraulic geometry form. Therefore, the most stable flow structure is the probable natural river plane formation. Natural coordinate transformation and perturbation methods were adapted to deform the governing equations of sine-generated river basic flow and disturbance flow independently. The stability and retention of perturbation waves were analyzed in our model to explain why meandering rivers followed a certain type of tqow path. Computation results showed that all types of perturbation waves in meandering rivers were most stable when the meandering wave number was about 0.39-0.41. We believe that this type of stable flow structure shaped a certain meandering river. The statistical average length-width ratios of Yalin, Habib and da Silva and Leopold and Wolman somewhat confirmed our most stable river mean- dering wave number. In some ways, meandering rivers always tend to diminish internal turbulence intensity.