期刊文献+
共找到125篇文章
< 1 2 7 >
每页显示 20 50 100
基于Tukey规则与初始中心点优化的K⁃means聚类改进算法 被引量:2
1
作者 柳菁 邱紫滢 +1 位作者 郭茂祖 余冬华 《数据采集与处理》 CSCD 北大核心 2023年第3期643-651,共9页
针对K⁃means聚类算法存在的初始中心点选择及异常点、离群点极易影响聚类结果等待改进问题,提出了一个基于Tukey规则与优化初始中心点选择的K⁃means改进算法。该算法利用Tukey规则构造核心与非核心子集,将聚类过程划分成2个阶段。同时,... 针对K⁃means聚类算法存在的初始中心点选择及异常点、离群点极易影响聚类结果等待改进问题,提出了一个基于Tukey规则与优化初始中心点选择的K⁃means改进算法。该算法利用Tukey规则构造核心与非核心子集,将聚类过程划分成2个阶段。同时,在核心子集上执行中心点逐个递增优化选择策略,选出初始中心点。在来自UCI的20个数据集上聚类结果表明,本文提出的算法优于K⁃means++聚类算法,有效地提升了聚类性能。 展开更多
关键词 数据挖掘 K⁃means算法 Tukey规则 中心点优化
下载PDF
初始中心优化的K-Means聚类算法 被引量:47
2
作者 李飞 薛彬 黄亚楼 《计算机科学》 CSCD 北大核心 2002年第7期94-96,共3页
1.引言 聚类分析(clustering)是人工智能研究的重要领域.聚类方法被广泛研究并应用于机器学习、统计分析、模式识别以及数据库数据挖掘与知识发现等不同的领域.
关键词 遗传算法 随机全局优化搜索算法 K—means算法 初始中心 优化
下载PDF
基于改进K-means聚类的在线新闻评论主题抽取 被引量:15
3
作者 夏火松 李保国 杨培 《情报学报》 CSSCI 北大核心 2016年第1期55-65,共11页
新闻评论反映民众对新闻事件的观点,抽取评论主题,对用户、企业、政府都具有很高的情报分析价值。基于K-means聚类的主题挖掘算法应用到新闻评论中时,在欧氏距离下,如果使用最大距离法选初始点则会聚成一大类。为解决这个问题,论文首先... 新闻评论反映民众对新闻事件的观点,抽取评论主题,对用户、企业、政府都具有很高的情报分析价值。基于K-means聚类的主题挖掘算法应用到新闻评论中时,在欧氏距离下,如果使用最大距离法选初始点则会聚成一大类。为解决这个问题,论文首先在预处理阶段增加同义词替换和自动构建领域词典的部分,改善了数据稀疏性和高维性。其次,提出了K-means改进算法,用隐藏长评论-最大距离法选初始点,解决了初始点多为离群点的问题,用方差拐点确定K值,解决了预先设定聚类个数的问题,实验发现了先用BW权重选初始点,再用新提出的BW-DF权重聚类的效果最好。最后,将改进算法与原算法的聚类效果比较,实验结果表明,改进算法准确率高,抽取新闻评论主题的效果明显。 展开更多
关键词 在线新闻评论 K—means改进 主题抽取 同义词替换 分词领域词典
下载PDF
模糊K-Harmonic Means聚类算法 被引量:6
4
作者 赵恒 杨万海 张高煜 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2005年第4期603-606,638,共5页
对K-HarmonicMeans算法进行扩展,考虑到数据点对不同类的隶属关系,将模糊的概念应用到聚类中,提出了模糊K-HarmonicMeans算法,推导出聚类中心和模糊隶属度的迭代公式.在中心迭代聚类算法统一框架的基础上,推导出FKHM算法聚类中心的条件... 对K-HarmonicMeans算法进行扩展,考虑到数据点对不同类的隶属关系,将模糊的概念应用到聚类中,提出了模糊K-HarmonicMeans算法,推导出聚类中心和模糊隶属度的迭代公式.在中心迭代聚类算法统一框架的基础上,推导出FKHM算法聚类中心的条件概率表达式以及在迭代过程中的数据加权函数表达式.最后,用Folkes&Mallows指标对聚类结果进行评价.实验表明,模糊K-HarmonicMeans(KHM)算法在聚类对于初值不敏感的同时提高了聚类结果的精确度,达到较好的聚类效果. 展开更多
关键词 模糊K—Harmonic means 中心 条件概率 Folkes & Mallows指标
下载PDF
结合X-means聚类的自适应随机子空间组合分类算法 被引量:5
5
作者 曹鹏 李博 +1 位作者 栗伟 赵大哲 《计算机应用》 CSCD 北大核心 2013年第2期550-553,共4页
针对大规模数据的分类准确率低且效率下降的问题,提出一种结合X-means聚类的自适应随机子空间组合分类算法。首先使用X-means聚类方法,保持原有数据结构的同时,把复杂的数据空间自动分解为多个样本子空间进行分治学习;而自适应随机子空... 针对大规模数据的分类准确率低且效率下降的问题,提出一种结合X-means聚类的自适应随机子空间组合分类算法。首先使用X-means聚类方法,保持原有数据结构的同时,把复杂的数据空间自动分解为多个样本子空间进行分治学习;而自适应随机子空间组合分类器,提升了基分类器的差异性并自动确定基分类器数量,提升了组合分类器的鲁棒性及分类准确性。该算法在人工和UCI数据集上进行了测试,并与传统单分类和组合分类算法进行了比较。实验结果表明,对于大规模数据集,该方法具有更好的分类精度和健壮性,并提升了整体算法的效率。 展开更多
关键词 大规模数据集 X—means 组合分 随机子空间 支持向量机
下载PDF
K-means聚类与SVDD结合的新的分类算法 被引量:7
6
作者 刘艳红 薛安荣 史习云 《计算机应用研究》 CSCD 北大核心 2010年第3期883-886,共4页
为了提高支持向量数据描述(SVDD)的分类精度,引入局部疏密度提出了改进的SVDD算法。该算法提高了分类精度,但增加了计算复杂度。为此,先用K-means聚类将整个数据集划分为k个簇,再用改进的SVDD算法并行训练k个簇,最后再对获得的k个局部... 为了提高支持向量数据描述(SVDD)的分类精度,引入局部疏密度提出了改进的SVDD算法。该算法提高了分类精度,但增加了计算复杂度。为此,先用K-means聚类将整个数据集划分为k个簇,再用改进的SVDD算法并行训练k个簇,最后再对获得的k个局部支持向量集训练,即得到最终的全局决策边界。由于采用了分而治之并行计算的方法,提高了算法的效率。对合成数据(200个)和实际数据的实验结果表明,所提算法较SVDD算法,训练时间降低为原来的10%,分类错误率较原来的降低了近一半。因此,所提算法提高了分类精度和算法效率。 展开更多
关键词 单值分 支持向量数据描述 K—means 局部疏密度
下载PDF
一种改进的K-means聚类彩色图像分割方法 被引量:18
7
作者 刘小丹 牛少敏 《湘潭大学自然科学学报》 CAS CSCD 北大核心 2012年第2期90-93,共4页
图像分割是从图像处理到图像分析的关键步骤.图像分割的目的是将图像分割为多个互不重叠且又各具特性的区域,主要应用于图像压缩、目标提取、模式识别等.以往的图像分割技术主要应用于灰度图像,随着计算机技术的进步,彩色图像分割逐渐... 图像分割是从图像处理到图像分析的关键步骤.图像分割的目的是将图像分割为多个互不重叠且又各具特性的区域,主要应用于图像压缩、目标提取、模式识别等.以往的图像分割技术主要应用于灰度图像,随着计算机技术的进步,彩色图像分割逐渐受到关注.该文在前人对彩色图像分割问题的大量研究成果基础上,提出了一种将K-means聚类、蚁群算法以及分水岭算法相结合的分割方法.本方法有效的克服了聚类数目必须依据先验知识提前设定、最初的聚类中心是随机选取的、聚类的效果好坏依赖于距离判定公式的缺陷. 展开更多
关键词 K—means 彩色图像分割 蚁群算法 分水岭算法
下载PDF
一种优化初始中心的K-means聚类算法 被引量:22
8
作者 邓海 覃华 孙欣 《计算机技术与发展》 2013年第11期42-45,共4页
针对传统K-means聚类算法对初始聚类中心的敏感性和随机性,造成容易陷入局部最优解和聚类结果波动性大的问题,结合密度法和最大化最小距离的思想,提出基于最近高密度点间的垂直中心点优化初始聚类中心的K-means聚类算法。该算法选取相... 针对传统K-means聚类算法对初始聚类中心的敏感性和随机性,造成容易陷入局部最优解和聚类结果波动性大的问题,结合密度法和最大化最小距离的思想,提出基于最近高密度点间的垂直中心点优化初始聚类中心的K-means聚类算法。该算法选取相互间距离最大的K对高密度点,并以这K对高密度点的均值作为聚类的初始中心,再进行Kmeans聚类。实验结果表明,该算法有效排除样本中含有的孤立点,并且聚类过程收敛速度快,聚类结果有更好的准确性和稳定性。 展开更多
关键词 K—means 中心 高密度点 垂直中心点
下载PDF
基于改进K-means聚类和量子粒子群算法的多航迹规划 被引量:5
9
作者 董阳 王瑾 柏鹏 《电讯技术》 北大核心 2014年第9期1249-1253,共5页
针对在复杂环境下需要通过多航迹规划以实现武器协同的问题,利用排挤机制产生Kmeans聚类的初始聚类中心,并将改进K-means聚类与量子粒子群算法(QPSO)相结合应用于无人机的三维多航迹规划。改进算法解决了K-means聚类易陷入局部最优、聚... 针对在复杂环境下需要通过多航迹规划以实现武器协同的问题,利用排挤机制产生Kmeans聚类的初始聚类中心,并将改进K-means聚类与量子粒子群算法(QPSO)相结合应用于无人机的三维多航迹规划。改进算法解决了K-means聚类易陷入局部最优、聚类准确率低的问题。根据产生的初始聚类中心,将粒子划分成多个子种群,利用QPSO算法对每个子种群进行优化,使得每个子种群可以产生一条可行航迹。仿真分析证明了改进算法可以有效保证子种群之间的多样性,生成较为分散的多条可行航迹。 展开更多
关键词 无人机 多航迹规划 排挤机制 量子粒子群优化 K—means
下载PDF
基于K-means聚类的纺织品印花图像区域分割 被引量:8
10
作者 李鹏飞 张宏伟 《西安工程大学学报》 CAS 2008年第5期551-554,共4页
对纺织品彩色印花图像进行颜色区域分割.将彩色纺织品印花图像转换到CIEL*a*b颜色空间,用K均值聚类分析算法对描述颜色的a*和b*通道进行聚类分析;通过提取各个颜色区域独立成为单色的新图像,对彩色纺织品印花图像进行分割处理.实验结果... 对纺织品彩色印花图像进行颜色区域分割.将彩色纺织品印花图像转换到CIEL*a*b颜色空间,用K均值聚类分析算法对描述颜色的a*和b*通道进行聚类分析;通过提取各个颜色区域独立成为单色的新图像,对彩色纺织品印花图像进行分割处理.实验结果表明,在CIEL*a*b空间使用K-means聚类算法可以有效地分割彩色纺织品图像的颜色区域. 展开更多
关键词 纺织品印花图像 图像分割 K—means L*a*b颜色空间
下载PDF
冲击噪声下基于张量分解和K‑means聚类的MIMO雷达阵列诊断 被引量:3
11
作者 陈金立 王亚鹏 +1 位作者 李家强 龙伟军 《电子学报》 EI CAS CSCD 北大核心 2021年第12期2315-2322,共8页
针对冲击噪声下多输入多输出(Multiple‑Input Multiple‑Output,MIMO)雷达阵列诊断失效问题,对基于二阶矩的传统匹配滤波器进行改进以适应非高斯噪声,并提出一种基于张量分解和K‑means聚类的阵列诊断方法.该方法利用MIMO雷达各接收阵元... 针对冲击噪声下多输入多输出(Multiple‑Input Multiple‑Output,MIMO)雷达阵列诊断失效问题,对基于二阶矩的传统匹配滤波器进行改进以适应非高斯噪声,并提出一种基于张量分解和K‑means聚类的阵列诊断方法.该方法利用MIMO雷达各接收阵元回波信号的高斯核函数值来自适应地调整匹配滤波器的系数,以有效形成虚拟阵列.为挖掘正常和故障阵元的匹配滤波输出数据的多维特征,将虚拟阵列协方差矩阵构建成三阶平行因子(PARAllel FACtor,PARAFAC)张量,并通过COMFAC(COMplex parallel FACtor analysis)算法分解获得收发阵列流形矩阵,使用欧式距离度量其相似性,确定两个簇类数据的聚类中心并划分出异常簇类,以完成故障阵元位置的诊断.仿真结果验证了所提算法的有效性. 展开更多
关键词 MIMO雷达 阵列诊断 冲击噪声 匹配滤波 张量分解 K‑means
下载PDF
基于局部相似性的K-means谱聚类算法 被引量:2
12
作者 王林 高红艳 王佰超 《西安理工大学学报》 CAS 北大核心 2013年第4期455-459,共5页
定义科学的局部相似性指数是基于局部相似性社团发现算法的关键,根据共有邻居信息定义的局部形似性指数对直接相连接点对的相似性数值存在低估倾向,本研究将节点对的关联信息加入到srensen局部相似性指数的定义中,结合K-means谱聚类... 定义科学的局部相似性指数是基于局部相似性社团发现算法的关键,根据共有邻居信息定义的局部形似性指数对直接相连接点对的相似性数值存在低估倾向,本研究将节点对的关联信息加入到srensen局部相似性指数的定义中,结合K-means谱聚类算法对网络节点进行聚类。本研究定义的局部相似性指数克服了传统局部相似性指数的缺点,且保持了原有的计算复杂性。在计算机生成网络和实际网络上运行,并和经典算法做了比较,实验证明,所提算法能够较为有效、准确地检测网络的社团结构。 展开更多
关键词 局部相似性 K means
下载PDF
基于划分的数据挖掘K-means聚类算法分析 被引量:19
13
作者 曾俊 《现代电子技术》 北大核心 2020年第3期14-17,共4页
为提升数据挖掘中聚类分析的效果,在分析数据挖掘、聚类分析、传统K⁃means算法的基础上,提出一种改进的K⁃means算法。首先将整体数据集分为k类,然后设定一个密度参数为ϑ,该密度参数反映数据库中数据所处区域的密度大小,ϑ值与密度大小成... 为提升数据挖掘中聚类分析的效果,在分析数据挖掘、聚类分析、传统K⁃means算法的基础上,提出一种改进的K⁃means算法。首先将整体数据集分为k类,然后设定一个密度参数为ϑ,该密度参数反映数据库中数据所处区域的密度大小,ϑ值与密度大小成正比,通过密度参数优化k个样本数据的聚类中心点选取;依据欧几里得距离公式对未选取的其他数据到各个聚类中心之间的距离进行计算,同时以此距离为判别标准,对各个数据进行种类划分,从而得到初始的聚类分布;初始聚类分布得到之后,对每一个分布簇进行再一次的中心点计算,并判断与之前所取中心点是否相同,直到其聚类收敛达到最优效果。最后通过葡萄酒数据集对改进算法进行验证分析,改进算法比传统K⁃means算法的聚类效果更优,能够更好地在数据挖掘当中进行聚类。 展开更多
关键词 数据挖掘 分析 K⁃means算法 中心选取 K⁃means算法改进 初始中心点
下载PDF
用核K-means聚类减样法优化半定规划支持向量机 被引量:1
14
作者 何慧 胡小红 +1 位作者 覃华 张敏 《江西师范大学学报(自然科学版)》 CAS 北大核心 2013年第6期574-578,共5页
提出了使用核空间K-means聚类算法从训练集中抽取特征边界支持向量集,在边界集上构造支持向量机的半定规划问题,由于边界集的规模比原始训练集要小,降低了半定规划支持向量机的规模,达到优化向量机的目的.在UCI数据集上的实验结果表明:... 提出了使用核空间K-means聚类算法从训练集中抽取特征边界支持向量集,在边界集上构造支持向量机的半定规划问题,由于边界集的规模比原始训练集要小,降低了半定规划支持向量机的规模,达到优化向量机的目的.在UCI数据集上的实验结果表明:所提优化方法在求解多核半定规划向量机时,比原始方法获得几倍以上的速度提升,分类精度基本不变. 展开更多
关键词 支持向量机 半定规划 核K—means 减样
下载PDF
基于动态隧道系统的K-means聚类算法研究 被引量:8
15
作者 吕佳 《重庆师范大学学报(自然科学版)》 CAS 2009年第1期73-77,共5页
针对K-means聚类算法易陷入局部极小的问题,利用动态隧道算法在解决全局最优化问题中的有效性,将算法中的动态隧道过程引入到K-means聚类算法中,提出了一种基于动态隧道算法的K-means聚类算法。该算法在K-means聚类算法寻优得到的局部... 针对K-means聚类算法易陷入局部极小的问题,利用动态隧道算法在解决全局最优化问题中的有效性,将算法中的动态隧道过程引入到K-means聚类算法中,提出了一种基于动态隧道算法的K-means聚类算法。该算法在K-means聚类算法寻优得到的局部极小值基础上,利用动态隧道过程寻找更小的能量盆地,再将其值提交给K-means聚类算法进行迭代寻优,重复该过程,直到找到全局最小值。理论分析和仿真实验证明,该算法的聚类效果要优于K-means聚类算法。 展开更多
关键词 K—means算法 全局最优化 目标函数 动态隧道系统 能量盆地
下载PDF
改进的K-Means聚类算法在保险客户信用分析中的算法实现 被引量:2
16
作者 宋加升 陈琰 《哈尔滨理工大学学报》 CAS 北大核心 2009年第1期116-119,共4页
针对保险业对客户信息的分析中缺乏考虑客户信用分析的问题,根据聚类分析算法理论和保险公司客户数据库特点,进一步对K-means聚类算法在大样本环境下初始聚类中心的选取提出有效改进,同时选取一家财产保险公司的客户信用数据,来探讨聚... 针对保险业对客户信息的分析中缺乏考虑客户信用分析的问题,根据聚类分析算法理论和保险公司客户数据库特点,进一步对K-means聚类算法在大样本环境下初始聚类中心的选取提出有效改进,同时选取一家财产保险公司的客户信用数据,来探讨聚类算法在保险客户信用分析中的应用. 展开更多
关键词 分析 K—means算法 保险客户
下载PDF
基于复合形遗传算法的K-means优化聚类方法 被引量:2
17
作者 赵锋 薛惠锋 王伟 《航空计算技术》 2006年第5期59-61,64,共4页
针对基本遗传算法所存在的缺点和不足,提出了一种改进的遗传算法———复合形遗传算法,并将其用于K-m eans优化聚类。把复合形法嵌入到遗传算法中,利用复合形法对遗传算法群体中的部分个体进行处理,来改善种群的质量,以加快最优解的搜... 针对基本遗传算法所存在的缺点和不足,提出了一种改进的遗传算法———复合形遗传算法,并将其用于K-m eans优化聚类。把复合形法嵌入到遗传算法中,利用复合形法对遗传算法群体中的部分个体进行处理,来改善种群的质量,以加快最优解的搜索进程。该方法既有复合形法快速高效的特点,又有遗传算法全局性好的特点。算例的结果表明,该方法用于改进K-m eans优化聚类是可行的与有效的。 展开更多
关键词 K—means 遗传算法 复合形 复合形遗传算法 数据挖掘
下载PDF
基于组合优化方法的K-means聚类算法实现 被引量:2
18
作者 朱贵良 赵凯 赵锋 《华北水利水电学院学报》 2007年第5期43-45,共3页
针对标准遗传算法用于K-means优化聚类存在的问题,提出了一种基于组合优化方法的K-means聚类算法.实验结果表明:基于组合优化方法的K-means优化聚类算法效率较高,结果较好.
关键词 K—means 遗传算法 复合形法 组合优化
下载PDF
基于K-means聚类算法的中学混合式教学行为研究 被引量:2
19
作者 宗春梅 武剑飞 +1 位作者 郝耀军 董晓红 《教育与装备研究》 2019年第12期61-66,共6页
为了研究中学混合式教学的效果,使用Python语言对K means算法模型进行实现及改进,并在此基础上建立了成绩分析的基本模型。首先对Iris数据集的相关属性进行分析,进而发现不同类的属性差别,其后将这种差别用名为“权值”的量体现出来,并... 为了研究中学混合式教学的效果,使用Python语言对K means算法模型进行实现及改进,并在此基础上建立了成绩分析的基本模型。首先对Iris数据集的相关属性进行分析,进而发现不同类的属性差别,其后将这种差别用名为“权值”的量体现出来,并将权值加入了聚类计算过程,实现了K means算法的改进。接着以Iris数据集为对象进行了测试。实验结果表明所建模型对Iris数据集聚类的准确率提升到了96%以上,且聚类结果相对稳定并且运行时间明显降低。最后使用改进后的K means算法模型对成绩数据做信息挖掘,给相关中学教学实施者带来客观的指导性意见,从而使数据挖掘起到教学辅助的作用。 展开更多
关键词 混合式教学 K means算法 成绩分析
下载PDF
基于K-means聚类算法的沥青烟电除尘器火花分析
20
作者 赵艳平 张艳华 胡伟伟 《工业安全与环保》 北大核心 2014年第4期31-33,共3页
为了保证沥青烟电除尘器的除尘效率、降低除尘设备的火灾风险,采用了K-means聚类的方法分析ESP放电信号。首先将ESP伏安特性曲线的二维空间进行了分割,确定了不同运行状态与聚类中心的关系,然后使用K-means聚类算法计算其聚类中心,最后... 为了保证沥青烟电除尘器的除尘效率、降低除尘设备的火灾风险,采用了K-means聚类的方法分析ESP放电信号。首先将ESP伏安特性曲线的二维空间进行了分割,确定了不同运行状态与聚类中心的关系,然后使用K-means聚类算法计算其聚类中心,最后根据当前ESP输入参数与各个聚类中心欧氏距离的关系,从而判断出ESP是否处于火花放电状态。仿真结果表明该方法可以准确地判断出所有火花放电信号。 展开更多
关键词 电除尘器 沥青烟气 放电信号 K—means算法
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部