The venturi meter has an advantage in its use,because it can measure flow without being much affected by the type of the measured fluid or flow conditions.Hence,it has excellent versatility and is being widely applied...The venturi meter has an advantage in its use,because it can measure flow without being much affected by the type of the measured fluid or flow conditions.Hence,it has excellent versatility and is being widely applied in many industries.The flow of a liquid containing air is a representative example of a multiphase flow and exhibits complex flow characteristics.In particular,the greater the gas volume fraction(GVF),the more inhomogeneous the flow becomes.As a result,using a venturi meter to measure the rate of a flow that has a high GVF generates an error.In this study,the cause of the error occurred in measuring the flow rate for the multiphase flow when using the venturi meter for analysis by CFD.To ensure the reliability of this study,the accuracy of the multiphase flow models for numerical analysis was verified through comparison between the calculated results of numerical analysis and the experimental data.As a result,the Grace model,which is a multiphase flow model established by an experiment with water and air,was confirmed to have the highest reliability.Finally,the characteristics of the internal flow Held about the multiphase flow analysis result generated by applying the Grace model were analyzed to find the cause of the uncertainty occurring when measuring the flow rate of the multiphase flow using the venturi meter.A phase separation phenomenon occurred due to a density difference of water and air inside the venturi,and flow inhomogeneity happened according to the flow velocity difference of each phase.It was confirmed that this flow inhomogeneity increased as the GVF increased due to the uncertainty of the flow measurement.展开更多
The measurement uncertainty provides complete information about an analytical result. This is very important because several decisions of compliance or non-compliance are based on analytical results in pharmaceutical ...The measurement uncertainty provides complete information about an analytical result. This is very important because several decisions of compliance or non-compliance are based on analytical results in pharmaceutical industries. The aim of this work was to evaluate and discuss the estimation of uncertainty in pharmaceutical analysis. The uncertainty is a useful tool in the assessment of compliance or non-compliance of in-process and final pharmaceutical products as well as in the assessment of pharmaceutical equivalence and stability study of drug products.展开更多
The overall purpose of performing measurements in science is to increase knowledge and document about some physical quantity. The measurand has a true value but, except for straightforward counting situations, the tru...The overall purpose of performing measurements in science is to increase knowledge and document about some physical quantity. The measurand has a true value but, except for straightforward counting situations, the true value can never be fully determined. When a quantity is measured, the outcome depends on the measuring system, the measurement procedure, the skill of the operator, the environment and other effects. In practice the uncertainty on the result may arise from many possible sources, including examples such as incomplete definition, sampling, matrix effects and interferences, environmental couditions, uncertainties of weights and volumetric equipment, reference wtlues, approximations and assump- tions incorporated in the measurement method and procedure, and random wlriation. The objective of the paper is how to identify the sources of uncertainty in measurement and their importance on the result.展开更多
To solve the problem of borehole trajectory uncertainty, some methods such as error ellipsoid posture characterization, sectional error ellipse solution and error elliptic cylinder construction were proposed and an ap...To solve the problem of borehole trajectory uncertainty, some methods such as error ellipsoid posture characterization, sectional error ellipse solution and error elliptic cylinder construction were proposed and an application example was given. According to the definition of inclination, azimuth and tool-face angle, a characterization method of error ellipsoid posture of borehole trajectory was presented. By intercepting the error ellipsoid with an arbitrary plane in space, the general concept and algorithm of sectional error ellipse were established to analyze the borehole trajectory errors in horizontal plane, plumb plane, normal plane, etc. Based on the theory of surface tangency and curve projection, a construction method of error elliptic cylinder of borehole trajectory was put forward to evaluate the axial enveloping error of borehole trajectory and its variation along well depth. The research shows that the deeper the well, the greater the borehole trajectory error will be. In deep and ultra-deep wells measured using conventional measurement while drilling(MWD),the borehole trajectory position error reaches tens of meters. The research results provide a complete set of analysis methods for borehole trajectory error, which can evaluate the accuracy and reliability of borehole trajectory monitoring.展开更多
Inevitable geometric variations significantly affect the performance of turbines or even that of entire engines;thus,it is necessary to determine their actual characteristics and accurately estimate their impact on pe...Inevitable geometric variations significantly affect the performance of turbines or even that of entire engines;thus,it is necessary to determine their actual characteristics and accurately estimate their impact on performance.In this study,based on 1781 measured profiles of a typical turbine blade,the statistical characteristics of the geometric variations and the uncertainty impact are analyzed,and some commonly used uncertainty modelling methods based on Principal-Component Analysis(PCA)are verified.The geometric variations are found to be evident,asymmetric,and non-uniform,and the non-normality of the random distributions is non-negligible.The performance is notably affected,which is manifested as an overall offset,a notable scattering,and significant deterioration in several extreme cases.Additionally,it is demonstrated that the PCA reconstruction model is effective in characterizing major uncertainty characteristics of the geometric variations and their impact on the performance with almost the first 10 PCA modes.Based on a reasonable profile error and mean geometric deviation,the Gaussian assumption and stochasticprocess-based model are also found to be effective in predicting the mean values and standard deviations of the performance variations.However,they fail to predict the probability of some extreme cases with high loss.Finally,a Chi-square-based correction model is proposed to compensate for this deficiency.The present work can provide a useful reference for uncertainty analysis of the impact of geometric variations,and the corresponding uncertainty design of turbine blades.展开更多
One of the most challenging tasks in the laser-driven Hugoniot experiment is how to increase the reproducibility and precision of the experimental data to meet the stringent requirement in validating equation of state...One of the most challenging tasks in the laser-driven Hugoniot experiment is how to increase the reproducibility and precision of the experimental data to meet the stringent requirement in validating equation of state models. In such cases, the contribution of intrinsic uncertainty becomes important and cannot be ignored. A detailed analysis of the intrinsic uncertainty of the aluminum-iron impedance-match experiment based on the measurement of velocities is presented. The influence of mirror-reflection approximation on the shocked pressure of Fe and intrinsic uncertainties from the equation of state uncertainty of standard material are quantified, Furthermore, the comparison of intrinsic uncertainties of four different experimental approaches is presented. It is shown that, compared with other approaches including the most widely used approach which relies on the measurements of the shock velocities of AI and Fe, the approach which relies on the measurement of the particle velocity of Al and the shock velocity of Fe has the smallest intrinsic uncertainty, which would promote such work to significantly improve the diagnostics precision in such an approach.展开更多
Experimentally measured neutron activation cross sections are presented for the^(65)Cu(n,α)^(62m)Cu,^(41)K(n,α)^(38)Cl,and^(65)Cu(n,2n)^(64)Cu reactions with detailed uncertainty propagation.The neutron cross sectio...Experimentally measured neutron activation cross sections are presented for the^(65)Cu(n,α)^(62m)Cu,^(41)K(n,α)^(38)Cl,and^(65)Cu(n,2n)^(64)Cu reactions with detailed uncertainty propagation.The neutron cross sections were measured at an incident energy of 14.92±0.02 MeV,and the neutrons were based on the t(d,n)αfusion reaction.The^(27)Al(n,α)^(24)Na reaction was used as a reference reaction for the normalization of the neutron flux.The pre-calibrated lead-shielded HPGe detector was used to detect the residues'γ-ray spectra.The data from the measured cross sections are compared to the previously measured cross sections from the EXFOR database,theoretically calculated cross sections using the TALYS and EMPIRE codes,and evaluated nuclear data.展开更多
Aims Accurate forecast of ecosystem states is critical for improving natural resourcemanagement and climate change mitigation.Assimilating observed data into models is an effective way to reduce uncertainties in ecolo...Aims Accurate forecast of ecosystem states is critical for improving natural resourcemanagement and climate change mitigation.Assimilating observed data into models is an effective way to reduce uncertainties in ecological forecasting.However,influences ofmeasurement errors on parameter estimation and forecasted state changes have not been carefully examined.This study analyzed the parameter identifiability of a process-based ecosystem carbon cycle model,the sensitivity of parameter estimates and model forecasts to the magnitudes of measurement errors and the information contributions of the assimilated data to model forecasts with a data assimilation approach.Methods We applied a Markov Chain Monte Carlo method to assimilate eight biometric data sets into the Terrestrial ECOsystemmodel.The data were the observations of foliage biomass,wood biomass,fine root biomass,microbial biomass,litter fall,litter,soil carbon and soil respiration,collected at the Duke Forest free-air CO_(2)enrichment facilities from 1996 to 2005.Three levels ofmeasurement errorswere assigned to these data sets by halving and doubling their original standard deviations.Important Findings Results showed that only less than half of the 30 parameters could be constrained,though the observations were extensive and themodelwas relatively simple.Highermeasurement errors led to higher uncertainties in parameters estimates and forecasted carbon(C)pool sizes.The longterm predictions of the slow turnover pools were affected less by the measurement errors than those of fast turnover pools.Assimilated data contributed less information for the pools with long residence times in long-term forecasts.These results indicate the residence times of C pools played a key role in regulating propagation of errors from measurements to model forecasts in a data assimilation system.Improving the estimation of parameters of slowturnover C pools is the key to better forecast long-term ecosystem C dynamics.展开更多
Experimentally measured neutron activation cross sections are presented for the ^(65)Cu(n,0)^(62m)Cu,^(41) K(n,a)^(38C)l,and ^(65)Cu(n.2n)^(64)Cu reactions with detailed uncertainty propagation.The neutron cross secio...Experimentally measured neutron activation cross sections are presented for the ^(65)Cu(n,0)^(62m)Cu,^(41) K(n,a)^(38C)l,and ^(65)Cu(n.2n)^(64)Cu reactions with detailed uncertainty propagation.The neutron cross secions were measured at an incident energy of 14.92±0.02 MeV,and the neutrons were based on the(d,n)a fusion reaction.The ^(27) Al(n,a)^(24)Na reaction was used as a reference reaction for the normalization of the neutron flux.The pre-calib-rated lead-shielded HPGe detector was used to detect the residues'γ-ray spetra.The data from the measured cross sections are compared to the previously measured cross sections from the EXFOR database,theoretically calculated cross sections using the TALYS and EMPIRE codes,and evaluated nuclear data.展开更多
A pavement reflectance measurement system is established based on a gonio-photometerexisting by chang- ing a bracket to carry the road sample and luminance meter, adding a collimated light source to provide incident l...A pavement reflectance measurement system is established based on a gonio-photometerexisting by chang- ing a bracket to carry the road sample and luminance meter, adding a collimated light source to provide incident light. This automated system could finish the reflection measurement of a road sample in 4 h. An uncertainty budget of this measurement system is made and the combined standard uncertainty of Q0 is 5.26%.展开更多
Identifying source information after river chemical spill occurrences is critical for emergency responses.However,the inverse uncertainty characteristics of this kind of pollution source inversion problem have not yet...Identifying source information after river chemical spill occurrences is critical for emergency responses.However,the inverse uncertainty characteristics of this kind of pollution source inversion problem have not yet been clearly elucidated.To fill this gap,stochastic analysis approaches,including a regional sensitivity analysis method,identifiability plot and perturbation methods,were employed to conduct an empirical investigation on generic inverse uncertainty characteristics under a well-accepted uncertainty analysis framework.Case studies based on field tracer experiments and synthetic numerical tracer experiments revealed several new rules.For example,the release load can be most easily inverted,and the source location is responsible for the largest uncertainty among the source parameters.The diffusion and convection processes are more sensitive than the dilution and pollutant attenuation processes to the optimization of objective functions in terms of structural uncertainty.The differences among the different objective functions are smaller for instantaneous release than for continuous release cases.Small monitoring errors affect the inversion results only slightly,which can be ignored in practice.Interestingly,the estimated values of the release location and time negatively deviate from the real values,and the extent is positively correlated with the relative size of the mixing zone to the objective river reach.These new findings improve decision making in emergency responses to sudden water pollution and guide the monitoring network design.展开更多
基金supported by the Industrial Infrastructure Program through The Korea Institute for Advancement of Technology(KIAT) Grant funded by the Korea government Ministry of Trade,Industry and Energy(Grant N0000502)
文摘The venturi meter has an advantage in its use,because it can measure flow without being much affected by the type of the measured fluid or flow conditions.Hence,it has excellent versatility and is being widely applied in many industries.The flow of a liquid containing air is a representative example of a multiphase flow and exhibits complex flow characteristics.In particular,the greater the gas volume fraction(GVF),the more inhomogeneous the flow becomes.As a result,using a venturi meter to measure the rate of a flow that has a high GVF generates an error.In this study,the cause of the error occurred in measuring the flow rate for the multiphase flow when using the venturi meter for analysis by CFD.To ensure the reliability of this study,the accuracy of the multiphase flow models for numerical analysis was verified through comparison between the calculated results of numerical analysis and the experimental data.As a result,the Grace model,which is a multiphase flow model established by an experiment with water and air,was confirmed to have the highest reliability.Finally,the characteristics of the internal flow Held about the multiphase flow analysis result generated by applying the Grace model were analyzed to find the cause of the uncertainty occurring when measuring the flow rate of the multiphase flow using the venturi meter.A phase separation phenomenon occurred due to a density difference of water and air inside the venturi,and flow inhomogeneity happened according to the flow velocity difference of each phase.It was confirmed that this flow inhomogeneity increased as the GVF increased due to the uncertainty of the flow measurement.
基金supported by Fundacao de Apoio à Pesquisa do Estado de Sao Paulo(FAPESP)
文摘The measurement uncertainty provides complete information about an analytical result. This is very important because several decisions of compliance or non-compliance are based on analytical results in pharmaceutical industries. The aim of this work was to evaluate and discuss the estimation of uncertainty in pharmaceutical analysis. The uncertainty is a useful tool in the assessment of compliance or non-compliance of in-process and final pharmaceutical products as well as in the assessment of pharmaceutical equivalence and stability study of drug products.
基金The Central Coal and Oil Testing Laboratory,Mahagenco,Nagpur(India)
文摘The overall purpose of performing measurements in science is to increase knowledge and document about some physical quantity. The measurand has a true value but, except for straightforward counting situations, the true value can never be fully determined. When a quantity is measured, the outcome depends on the measuring system, the measurement procedure, the skill of the operator, the environment and other effects. In practice the uncertainty on the result may arise from many possible sources, including examples such as incomplete definition, sampling, matrix effects and interferences, environmental couditions, uncertainties of weights and volumetric equipment, reference wtlues, approximations and assump- tions incorporated in the measurement method and procedure, and random wlriation. The objective of the paper is how to identify the sources of uncertainty in measurement and their importance on the result.
基金Supported by the China National Science and Technology Major Project(2017ZX05005-005)
文摘To solve the problem of borehole trajectory uncertainty, some methods such as error ellipsoid posture characterization, sectional error ellipse solution and error elliptic cylinder construction were proposed and an application example was given. According to the definition of inclination, azimuth and tool-face angle, a characterization method of error ellipsoid posture of borehole trajectory was presented. By intercepting the error ellipsoid with an arbitrary plane in space, the general concept and algorithm of sectional error ellipse were established to analyze the borehole trajectory errors in horizontal plane, plumb plane, normal plane, etc. Based on the theory of surface tangency and curve projection, a construction method of error elliptic cylinder of borehole trajectory was put forward to evaluate the axial enveloping error of borehole trajectory and its variation along well depth. The research shows that the deeper the well, the greater the borehole trajectory error will be. In deep and ultra-deep wells measured using conventional measurement while drilling(MWD),the borehole trajectory position error reaches tens of meters. The research results provide a complete set of analysis methods for borehole trajectory error, which can evaluate the accuracy and reliability of borehole trajectory monitoring.
基金supported by the National Science and Technology Major Project, China (No. J2019-II-0012-0032)
文摘Inevitable geometric variations significantly affect the performance of turbines or even that of entire engines;thus,it is necessary to determine their actual characteristics and accurately estimate their impact on performance.In this study,based on 1781 measured profiles of a typical turbine blade,the statistical characteristics of the geometric variations and the uncertainty impact are analyzed,and some commonly used uncertainty modelling methods based on Principal-Component Analysis(PCA)are verified.The geometric variations are found to be evident,asymmetric,and non-uniform,and the non-normality of the random distributions is non-negligible.The performance is notably affected,which is manifested as an overall offset,a notable scattering,and significant deterioration in several extreme cases.Additionally,it is demonstrated that the PCA reconstruction model is effective in characterizing major uncertainty characteristics of the geometric variations and their impact on the performance with almost the first 10 PCA modes.Based on a reasonable profile error and mean geometric deviation,the Gaussian assumption and stochasticprocess-based model are also found to be effective in predicting the mean values and standard deviations of the performance variations.However,they fail to predict the probability of some extreme cases with high loss.Finally,a Chi-square-based correction model is proposed to compensate for this deficiency.The present work can provide a useful reference for uncertainty analysis of the impact of geometric variations,and the corresponding uncertainty design of turbine blades.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11305156 and 11305159
文摘One of the most challenging tasks in the laser-driven Hugoniot experiment is how to increase the reproducibility and precision of the experimental data to meet the stringent requirement in validating equation of state models. In such cases, the contribution of intrinsic uncertainty becomes important and cannot be ignored. A detailed analysis of the intrinsic uncertainty of the aluminum-iron impedance-match experiment based on the measurement of velocities is presented. The influence of mirror-reflection approximation on the shocked pressure of Fe and intrinsic uncertainties from the equation of state uncertainty of standard material are quantified, Furthermore, the comparison of intrinsic uncertainties of four different experimental approaches is presented. It is shown that, compared with other approaches including the most widely used approach which relies on the measurements of the shock velocities of AI and Fe, the approach which relies on the measurement of the particle velocity of Al and the shock velocity of Fe has the smallest intrinsic uncertainty, which would promote such work to significantly improve the diagnostics precision in such an approach.
基金UGC-DAE Consortium for scientific research (UGC-DAE-CSR-KC/CRS/19/NP03/0913)SERB-DST, Government of India (CRG/2019/000360)Institutions of Eminence (IoE) BHU (Grant No. 6031)
文摘Experimentally measured neutron activation cross sections are presented for the^(65)Cu(n,α)^(62m)Cu,^(41)K(n,α)^(38)Cl,and^(65)Cu(n,2n)^(64)Cu reactions with detailed uncertainty propagation.The neutron cross sections were measured at an incident energy of 14.92±0.02 MeV,and the neutrons were based on the t(d,n)αfusion reaction.The^(27)Al(n,α)^(24)Na reaction was used as a reference reaction for the normalization of the neutron flux.The pre-calibrated lead-shielded HPGe detector was used to detect the residues'γ-ray spectra.The data from the measured cross sections are compared to the previously measured cross sections from the EXFOR database,theoretically calculated cross sections using the TALYS and EMPIRE codes,and evaluated nuclear data.
基金This research was financially supported by the Office of Science(BER),Department of Energy(DE-FG02-006ER64319)through the Midwestern Regional Center of the National Institute for Climatic Change Research at Michigan Technological University,under Award Number DE-FC02-06ER64158by National Science Foundation(DEB0078325 andDEB0743778).Themodel runswere performed at the Supercomputing Center for Education&Research(OSCER),University of Oklahoma.
文摘Aims Accurate forecast of ecosystem states is critical for improving natural resourcemanagement and climate change mitigation.Assimilating observed data into models is an effective way to reduce uncertainties in ecological forecasting.However,influences ofmeasurement errors on parameter estimation and forecasted state changes have not been carefully examined.This study analyzed the parameter identifiability of a process-based ecosystem carbon cycle model,the sensitivity of parameter estimates and model forecasts to the magnitudes of measurement errors and the information contributions of the assimilated data to model forecasts with a data assimilation approach.Methods We applied a Markov Chain Monte Carlo method to assimilate eight biometric data sets into the Terrestrial ECOsystemmodel.The data were the observations of foliage biomass,wood biomass,fine root biomass,microbial biomass,litter fall,litter,soil carbon and soil respiration,collected at the Duke Forest free-air CO_(2)enrichment facilities from 1996 to 2005.Three levels ofmeasurement errorswere assigned to these data sets by halving and doubling their original standard deviations.Important Findings Results showed that only less than half of the 30 parameters could be constrained,though the observations were extensive and themodelwas relatively simple.Highermeasurement errors led to higher uncertainties in parameters estimates and forecasted carbon(C)pool sizes.The longterm predictions of the slow turnover pools were affected less by the measurement errors than those of fast turnover pools.Assimilated data contributed less information for the pools with long residence times in long-term forecasts.These results indicate the residence times of C pools played a key role in regulating propagation of errors from measurements to model forecasts in a data assimilation system.Improving the estimation of parameters of slowturnover C pools is the key to better forecast long-term ecosystem C dynamics.
基金the UGC-DAE Consortium for scientific research(UGC-DAE-CSR-KC/CRS/19/NP03/0913)SERB-DST+1 种基金Government of India(CRG/2019/000360)Institutions of Eminence(IoE)BHU(Grant No.6031)。
文摘Experimentally measured neutron activation cross sections are presented for the ^(65)Cu(n,0)^(62m)Cu,^(41) K(n,a)^(38C)l,and ^(65)Cu(n.2n)^(64)Cu reactions with detailed uncertainty propagation.The neutron cross secions were measured at an incident energy of 14.92±0.02 MeV,and the neutrons were based on the(d,n)a fusion reaction.The ^(27) Al(n,a)^(24)Na reaction was used as a reference reaction for the normalization of the neutron flux.The pre-calib-rated lead-shielded HPGe detector was used to detect the residues'γ-ray spetra.The data from the measured cross sections are compared to the previously measured cross sections from the EXFOR database,theoretically calculated cross sections using the TALYS and EMPIRE codes,and evaluated nuclear data.
文摘A pavement reflectance measurement system is established based on a gonio-photometerexisting by chang- ing a bracket to carry the road sample and luminance meter, adding a collimated light source to provide incident light. This automated system could finish the reflection measurement of a road sample in 4 h. An uncertainty budget of this measurement system is made and the combined standard uncertainty of Q0 is 5.26%.
基金funded by the China Postdoctoral Science Foundation(Grant No.2014M551249)the National Natural Science Foundation of China(Grant No.51509061)support was provided by the Southern University of Science and Technology(Grant No.G01296001).
文摘Identifying source information after river chemical spill occurrences is critical for emergency responses.However,the inverse uncertainty characteristics of this kind of pollution source inversion problem have not yet been clearly elucidated.To fill this gap,stochastic analysis approaches,including a regional sensitivity analysis method,identifiability plot and perturbation methods,were employed to conduct an empirical investigation on generic inverse uncertainty characteristics under a well-accepted uncertainty analysis framework.Case studies based on field tracer experiments and synthetic numerical tracer experiments revealed several new rules.For example,the release load can be most easily inverted,and the source location is responsible for the largest uncertainty among the source parameters.The diffusion and convection processes are more sensitive than the dilution and pollutant attenuation processes to the optimization of objective functions in terms of structural uncertainty.The differences among the different objective functions are smaller for instantaneous release than for continuous release cases.Small monitoring errors affect the inversion results only slightly,which can be ignored in practice.Interestingly,the estimated values of the release location and time negatively deviate from the real values,and the extent is positively correlated with the relative size of the mixing zone to the objective river reach.These new findings improve decision making in emergency responses to sudden water pollution and guide the monitoring network design.