Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the i...Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the interfaces of verbal and emotional communications. The progress of AI is significant on the verbal level but modest in terms of the recognition of facial emotions even if this functionality is one of the oldest in humans and is omnipresent in our daily lives. Dysfunction in the ability for facial emotional expressions is present in many brain pathologies encountered by psychiatrists, neurologists, psychotherapists, mental health professionals including social workers. It cannot be objectively verified and measured due to a lack of reliable tools that are valid and consistently sensitive. Indeed, the articles in the scientific literature dealing with Visual-Facial-Emotions-Recognition (ViFaEmRe), suffer from the absence of 1) consensual and rational tools for continuous quantified measurement, 2) operational concepts. We have invented a software that can use computer-morphing attempting to respond to these two obstacles. It is identified as the Method of Analysis and Research of the Integration of Emotions (M.A.R.I.E.). Our primary goal is to use M.A.R.I.E. to understand the physiology of ViFaEmRe in normal healthy subjects by standardizing the measurements. Then, it will allow us to focus on subjects manifesting abnormalities in this ability. Our second goal is to make our contribution to the progress of AI hoping to add the dimension of recognition of facial emotional expressions. Objective: To study: 1) categorical vs dimensional aspects of recognition of ViFaEmRe, 2) universality vs idiosyncrasy, 3) immediate vs ambivalent Emotional-Decision-Making, 4) the Emotional-Fingerprint of a face and 5) creation of population references data. Methods: With M.A.R.I.E. enable a rational quantified measurement of Emotional-Visual-Acuity (EVA) of 1) a) an individual observer, b) in a population aged 20 to 70 years old, 2) measure the range and intensity of expressed emotions by 3 Face-Tests, 3) quantify the performance of a sample of 204 observers with hyper normal measures of cognition, “thymia,” (ibid. defined elsewhere) and low levels of anxiety 4) analysis of the 6 primary emotions. Results: We have individualized the following continuous parameters: 1) “Emotional-Visual-Acuity”, 2) “Visual-Emotional-Feeling”, 3) “Emotional-Quotient”, 4) “Emotional-Deci-sion-Making”, 5) “Emotional-Decision-Making Graph” or “Individual-Gun-Trigger”6) “Emotional-Fingerprint” or “Key-graph”, 7) “Emotional-Finger-print-Graph”, 8) detecting “misunderstanding” and 9) detecting “error”. This allowed us a taxonomy with coding of the face-emotion pair. Each face has specific measurements and graphics. The EVA improves from ages of 20 to 55 years, then decreases. It does not depend on the sex of the observer, nor the face studied. In addition, 1% of people endowed with normal intelligence do not recognize emotions. The categorical dimension is a variable for everyone. The range and intensity of ViFaEmRe is idiosyncratic and not universally uniform. The recognition of emotions is purely categorical for a single individual. It is dimensional for a population sample. Conclusions: Firstly, M.A.R.I.E. has made possible to bring out new concepts and new continuous measurements variables. The comparison between healthy and abnormal individuals makes it possible to take into consideration the significance of this line of study. From now on, these new functional parameters will allow us to identify and name “emotional” disorders or illnesses which can give additional dimension to behavioral disorders in all pathologies that affect the brain. Secondly, the ViFaEmRe is idiosyncratic, categorical, and a function of the identity of the observer and of the observed face. These findings stack up against Artificial Intelligence, which cannot have a globalist or regionalist algorithm that can be programmed into a robot, nor can AI compete with human abilities and judgment in this domain. *Here “Emotional disorders” refers to disorders of emotional expressions and recognition.展开更多
Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the i...Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the interfaces of verbal and emotional communications. The progress of AI is significant on the verbal level but modest in terms of the recognition of facial emotions even if this functionality is one of the oldest in humans and is omnipresent in our daily lives. Dysfunction in the ability for facial emotional expressions is present in many brain pathologies encountered by psychiatrists, neurologists, psychotherapists, mental health professionals including social workers. It cannot be objectively verified and measured due to a lack of reliable tools that are valid and consistently sensitive. Indeed, the articles in the scientific literature dealing with Visual-Facial-Emotions-Recognition (ViFaEmRe), suffer from the absence of 1) consensual and rational tools for continuous quantified measurement, 2) operational concepts. We have invented a software that can use computer-morphing attempting to respond to these two obstacles. It is identified as the Method of Analysis and Research of the Integration of Emotions (M.A.R.I.E.). Our primary goal is to use M.A.R.I.E. to understand the physiology of ViFaEmRe in normal healthy subjects by standardizing the measurements. Then, it will allow us to focus on subjects manifesting abnormalities in this ability. Our second goal is to make our contribution to the progress of AI hoping to add the dimension of recognition of facial emotional expressions. Objective: To study: 1) categorical vs dimensional aspects of recognition of ViFaEmRe, 2) universality vs idiosyncrasy, 3) immediate vs ambivalent Emotional-Decision-Making, 4) the Emotional-Fingerprint of a face and 5) creation of population references data. Methods: M.A.R.I.E. enables the rational, quantified measurement of Emotional Visual Acuity (EVA) in an individual observer and a population aged 20 to 70 years. Meanwhile, it can measure the range and intensity of expressed emotions through three Face- Tests, quantify the performance of a sample of 204 observers with hypernormal measures of cognition, “thymia” (defined elsewhere), and low levels of anxiety, and perform analysis of the six primary emotions. Results: We have individualized the following continuous parameters: 1) “Emotional-Visual- Acuity”, 2) “Visual-Emotional-Feeling”, 3) “Emotional-Quotient”, 4) “Emotional-Decision-Making”, 5) “Emotional-Decision-Making Graph” or “Individual-Gun-Trigger”, 6) “Emotional-Fingerprint” or “Key-graph”, 7) “Emotional-Fingerprint-Graph”, 8) detecting “misunderstanding” and 9) detecting “error”. This allowed us a taxonomy with coding of the face-emotion pair. Each face has specific measurements and graphics. The EVA improves from ages of 20 to 55 years, then decreases. It does not depend on the sex of the observer, nor the face studied. In addition, 1% of people endowed with normal intelligence do not recognize emotions. The categorical dimension is a variable for everyone. The range and intensity of ViFaEmRe is idiosyncratic and not universally uniform. The recognition of emotions is purely categorical for a single individual. It is dimensional for a population sample. Conclusions: Firstly, M.A.R.I.E. has made possible to bring out new concepts and new continuous measurements variables. The comparison between healthy and abnormal individuals makes it possible to take into consideration the significance of this line of study. From now on, these new functional parameters will allow us to identify and name “emotional” disorders or illnesses which can give additional dimension to behavioral disorders in all pathologies that affect the brain. Secondly, the ViFaEmRe is idiosyncratic, categorical, and a function of the identity of the observer and of the observed face. These findings stack up against Artificial Intelligence, which cannot have a globalist or regionalist algorithm that can be programmed into a robot, nor can AI compete with human abilities and judgment in this domain. *Here “Emotional disorders” refers to disorders of emotional expressions and recognition.展开更多
The supply of quality energy is a major concern for distribution network managers. This is the case for the company ASEMI, whose subscribers on the DJEGBE mini-power station network are faced with problems of current ...The supply of quality energy is a major concern for distribution network managers. This is the case for the company ASEMI, whose subscribers on the DJEGBE mini-power station network are faced with problems of current instability, voltage drops, and repetitive outages. This work is part of the search for the stability of the electrical distribution network by focusing on the audit of the DJEGBE mini photovoltaic solar power plant electrical network in the commune of OUESSE (Benin). This aims to highlight malfunctions on the low-voltage network to propose solutions for improving current stability among subscribers. Irregularities were noted, notably the overloading of certain lines of the PV network, implying poor distribution of loads by phase, which is the main cause of voltage drops;repetitive outages linked to overvoltage caused by lightning and overcurrent due to overload;faulty meters, absence of earth connection at subscribers. Peaks in consumption were obtained at night, which shows that consumption is greater in the evening. We examined the existing situation and processed the data collected, then simulated the energy consumption profiles with the network analyzer “LANGLOIS 6830” and “Excel”. The power factor value recorded is an average of 1, and the minimum value is 0.85. The daily output is 131.08 kWh, for a daily demand of 120 kWh and the average daily consumption is 109.92 kWh, or 83.86% of the energy produced per day. These results showed that the dysfunctions are linked to the distribution and the use of produced energy. Finally, we proposed possible solutions for improving the electrical distribution network. Thus, measures without investment and those requiring investment have been proposed.展开更多
In order to improve and evaluate the proficiency testing of cosmetic microorganism detection laboratory,strengthen the control of cosmetic microbial detection quality.In 2019 and 2020,the laboratory of the author’s u...In order to improve and evaluate the proficiency testing of cosmetic microorganism detection laboratory,strengthen the control of cosmetic microbial detection quality.In 2019 and 2020,the laboratory of the author’s unit participated in the proficiency testing(NIFDC-PT-242)and measurement audit(NIFDC-MA-2020-148)for molds and yeasts in cosmetics organized by the National Institutes for Food and Drug Control,respectively.According to the operation instruction for counting molds and yeasts in cosmetics and the Safety and Technical Standards for Cosmetics,the results of the sample for proficiency testing numbered NIFDC-PT-242 were unsatisfactory,and the results of the sample for measurement audit numbered NIFDC-MA-2020-148 were satisfactory.In view of the unsatisfactory results,the laboratory analyzed and summarized from the aspects of“human,machine,material,method and environment”,providing reference for the laboratories participating in proficiency testing and measurement audit..展开更多
文摘Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the interfaces of verbal and emotional communications. The progress of AI is significant on the verbal level but modest in terms of the recognition of facial emotions even if this functionality is one of the oldest in humans and is omnipresent in our daily lives. Dysfunction in the ability for facial emotional expressions is present in many brain pathologies encountered by psychiatrists, neurologists, psychotherapists, mental health professionals including social workers. It cannot be objectively verified and measured due to a lack of reliable tools that are valid and consistently sensitive. Indeed, the articles in the scientific literature dealing with Visual-Facial-Emotions-Recognition (ViFaEmRe), suffer from the absence of 1) consensual and rational tools for continuous quantified measurement, 2) operational concepts. We have invented a software that can use computer-morphing attempting to respond to these two obstacles. It is identified as the Method of Analysis and Research of the Integration of Emotions (M.A.R.I.E.). Our primary goal is to use M.A.R.I.E. to understand the physiology of ViFaEmRe in normal healthy subjects by standardizing the measurements. Then, it will allow us to focus on subjects manifesting abnormalities in this ability. Our second goal is to make our contribution to the progress of AI hoping to add the dimension of recognition of facial emotional expressions. Objective: To study: 1) categorical vs dimensional aspects of recognition of ViFaEmRe, 2) universality vs idiosyncrasy, 3) immediate vs ambivalent Emotional-Decision-Making, 4) the Emotional-Fingerprint of a face and 5) creation of population references data. Methods: With M.A.R.I.E. enable a rational quantified measurement of Emotional-Visual-Acuity (EVA) of 1) a) an individual observer, b) in a population aged 20 to 70 years old, 2) measure the range and intensity of expressed emotions by 3 Face-Tests, 3) quantify the performance of a sample of 204 observers with hyper normal measures of cognition, “thymia,” (ibid. defined elsewhere) and low levels of anxiety 4) analysis of the 6 primary emotions. Results: We have individualized the following continuous parameters: 1) “Emotional-Visual-Acuity”, 2) “Visual-Emotional-Feeling”, 3) “Emotional-Quotient”, 4) “Emotional-Deci-sion-Making”, 5) “Emotional-Decision-Making Graph” or “Individual-Gun-Trigger”6) “Emotional-Fingerprint” or “Key-graph”, 7) “Emotional-Finger-print-Graph”, 8) detecting “misunderstanding” and 9) detecting “error”. This allowed us a taxonomy with coding of the face-emotion pair. Each face has specific measurements and graphics. The EVA improves from ages of 20 to 55 years, then decreases. It does not depend on the sex of the observer, nor the face studied. In addition, 1% of people endowed with normal intelligence do not recognize emotions. The categorical dimension is a variable for everyone. The range and intensity of ViFaEmRe is idiosyncratic and not universally uniform. The recognition of emotions is purely categorical for a single individual. It is dimensional for a population sample. Conclusions: Firstly, M.A.R.I.E. has made possible to bring out new concepts and new continuous measurements variables. The comparison between healthy and abnormal individuals makes it possible to take into consideration the significance of this line of study. From now on, these new functional parameters will allow us to identify and name “emotional” disorders or illnesses which can give additional dimension to behavioral disorders in all pathologies that affect the brain. Secondly, the ViFaEmRe is idiosyncratic, categorical, and a function of the identity of the observer and of the observed face. These findings stack up against Artificial Intelligence, which cannot have a globalist or regionalist algorithm that can be programmed into a robot, nor can AI compete with human abilities and judgment in this domain. *Here “Emotional disorders” refers to disorders of emotional expressions and recognition.
文摘Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the interfaces of verbal and emotional communications. The progress of AI is significant on the verbal level but modest in terms of the recognition of facial emotions even if this functionality is one of the oldest in humans and is omnipresent in our daily lives. Dysfunction in the ability for facial emotional expressions is present in many brain pathologies encountered by psychiatrists, neurologists, psychotherapists, mental health professionals including social workers. It cannot be objectively verified and measured due to a lack of reliable tools that are valid and consistently sensitive. Indeed, the articles in the scientific literature dealing with Visual-Facial-Emotions-Recognition (ViFaEmRe), suffer from the absence of 1) consensual and rational tools for continuous quantified measurement, 2) operational concepts. We have invented a software that can use computer-morphing attempting to respond to these two obstacles. It is identified as the Method of Analysis and Research of the Integration of Emotions (M.A.R.I.E.). Our primary goal is to use M.A.R.I.E. to understand the physiology of ViFaEmRe in normal healthy subjects by standardizing the measurements. Then, it will allow us to focus on subjects manifesting abnormalities in this ability. Our second goal is to make our contribution to the progress of AI hoping to add the dimension of recognition of facial emotional expressions. Objective: To study: 1) categorical vs dimensional aspects of recognition of ViFaEmRe, 2) universality vs idiosyncrasy, 3) immediate vs ambivalent Emotional-Decision-Making, 4) the Emotional-Fingerprint of a face and 5) creation of population references data. Methods: M.A.R.I.E. enables the rational, quantified measurement of Emotional Visual Acuity (EVA) in an individual observer and a population aged 20 to 70 years. Meanwhile, it can measure the range and intensity of expressed emotions through three Face- Tests, quantify the performance of a sample of 204 observers with hypernormal measures of cognition, “thymia” (defined elsewhere), and low levels of anxiety, and perform analysis of the six primary emotions. Results: We have individualized the following continuous parameters: 1) “Emotional-Visual- Acuity”, 2) “Visual-Emotional-Feeling”, 3) “Emotional-Quotient”, 4) “Emotional-Decision-Making”, 5) “Emotional-Decision-Making Graph” or “Individual-Gun-Trigger”, 6) “Emotional-Fingerprint” or “Key-graph”, 7) “Emotional-Fingerprint-Graph”, 8) detecting “misunderstanding” and 9) detecting “error”. This allowed us a taxonomy with coding of the face-emotion pair. Each face has specific measurements and graphics. The EVA improves from ages of 20 to 55 years, then decreases. It does not depend on the sex of the observer, nor the face studied. In addition, 1% of people endowed with normal intelligence do not recognize emotions. The categorical dimension is a variable for everyone. The range and intensity of ViFaEmRe is idiosyncratic and not universally uniform. The recognition of emotions is purely categorical for a single individual. It is dimensional for a population sample. Conclusions: Firstly, M.A.R.I.E. has made possible to bring out new concepts and new continuous measurements variables. The comparison between healthy and abnormal individuals makes it possible to take into consideration the significance of this line of study. From now on, these new functional parameters will allow us to identify and name “emotional” disorders or illnesses which can give additional dimension to behavioral disorders in all pathologies that affect the brain. Secondly, the ViFaEmRe is idiosyncratic, categorical, and a function of the identity of the observer and of the observed face. These findings stack up against Artificial Intelligence, which cannot have a globalist or regionalist algorithm that can be programmed into a robot, nor can AI compete with human abilities and judgment in this domain. *Here “Emotional disorders” refers to disorders of emotional expressions and recognition.
文摘The supply of quality energy is a major concern for distribution network managers. This is the case for the company ASEMI, whose subscribers on the DJEGBE mini-power station network are faced with problems of current instability, voltage drops, and repetitive outages. This work is part of the search for the stability of the electrical distribution network by focusing on the audit of the DJEGBE mini photovoltaic solar power plant electrical network in the commune of OUESSE (Benin). This aims to highlight malfunctions on the low-voltage network to propose solutions for improving current stability among subscribers. Irregularities were noted, notably the overloading of certain lines of the PV network, implying poor distribution of loads by phase, which is the main cause of voltage drops;repetitive outages linked to overvoltage caused by lightning and overcurrent due to overload;faulty meters, absence of earth connection at subscribers. Peaks in consumption were obtained at night, which shows that consumption is greater in the evening. We examined the existing situation and processed the data collected, then simulated the energy consumption profiles with the network analyzer “LANGLOIS 6830” and “Excel”. The power factor value recorded is an average of 1, and the minimum value is 0.85. The daily output is 131.08 kWh, for a daily demand of 120 kWh and the average daily consumption is 109.92 kWh, or 83.86% of the energy produced per day. These results showed that the dysfunctions are linked to the distribution and the use of produced energy. Finally, we proposed possible solutions for improving the electrical distribution network. Thus, measures without investment and those requiring investment have been proposed.
文摘In order to improve and evaluate the proficiency testing of cosmetic microorganism detection laboratory,strengthen the control of cosmetic microbial detection quality.In 2019 and 2020,the laboratory of the author’s unit participated in the proficiency testing(NIFDC-PT-242)and measurement audit(NIFDC-MA-2020-148)for molds and yeasts in cosmetics organized by the National Institutes for Food and Drug Control,respectively.According to the operation instruction for counting molds and yeasts in cosmetics and the Safety and Technical Standards for Cosmetics,the results of the sample for proficiency testing numbered NIFDC-PT-242 were unsatisfactory,and the results of the sample for measurement audit numbered NIFDC-MA-2020-148 were satisfactory.In view of the unsatisfactory results,the laboratory analyzed and summarized from the aspects of“human,machine,material,method and environment”,providing reference for the laboratories participating in proficiency testing and measurement audit..