Distributed temperature sensing(DTS)using heated cables has been recently developed for distributed monitoring of in-situ soil moisture content.In this method,the thermal and electrical properties of heated cables hav...Distributed temperature sensing(DTS)using heated cables has been recently developed for distributed monitoring of in-situ soil moisture content.In this method,the thermal and electrical properties of heated cables have a significant influence on the measurement accuracy of soil moisture content.In this paper,the performances of two heated cables,i.e.the carbon-fiber heated cable(CFHC)and the metalnet heated cable(MNHC),are studied in the laboratory.Their structures,uniformity in the axial direction,measurement accuracy and suitability are evaluated.The test results indicate that the MNHC has a better uniformity in the axial direction than CFHC.Both CFHC and MNHC have high measurement accuracy.The CFHC is more suitable for short-distance measurement(500 m),while the MNHC can be used for longdistance measurement(>500 m).展开更多
According to the existing method including testing the frequency and establishing the relationship between moisture content and frequency, a corresponding instrument was designed. In order to further improve the accur...According to the existing method including testing the frequency and establishing the relationship between moisture content and frequency, a corresponding instrument was designed. In order to further improve the accuracy and rapidity of the system, a new approach to describe the relationship between the measurement error and the temperature was proposed. The error band could be obtained and divided into several parts(based on the range of temperature) to indicate the error value that should compensate the grain moisture content for the changes in temperature. By calculating the error band at the maximum and the minimum operating temperatures, as well as by determining the error compensation value from the error band based on the measurement moisture content, the final effective result was derived.展开更多
The measurements of temperature and moisture content of a wet porous material were accomplished on the micro-seconds scale. The temperature wave was observed when the wet porous material was heated by short-pulsed las...The measurements of temperature and moisture content of a wet porous material were accomplished on the micro-seconds scale. The temperature wave was observed when the wet porous material was heated by short-pulsed laser with high power. It firstly revealed that the moisture content of wet porous material rapidly rises twice in one laser irradiation. The influences of laser parameters, the thickness and initial moisture content of the wet porous material on its temperature and moisture content were investigated.展开更多
Moisture content is a fundamental physical index that quantifies soil property and is closely associatedwith the hydrological, ecological and engineering behaviors of soil. To measure in-situ soil moisturecontents, a ...Moisture content is a fundamental physical index that quantifies soil property and is closely associatedwith the hydrological, ecological and engineering behaviors of soil. To measure in-situ soil moisturecontents, a distributed measurement system for in-situ soil moisture content (SM-DTS) is introduced.The system is based on carbon-fiber heated cable (CFHC) technology that has been developed to enhancethe measuring accuracy of in-situ soil moisture content. Using CFHC technique, a temperature characteristicvalue (Tt) can be defined from temperatureetime curves. A relationship among Tt, soil thermalimpedance coefficient and soil moisture content is then established in laboratory. The feasibility of theSM-DTS technology to provide distributed measurements of in-situ soil moisture content is verifiedthrough field tests. The research reported herein indicates that the proposed SM-DTS is capable ofmeasuring in-situ soil moisture content over long distances and large areas.展开更多
The loss-on-drying method has been widely used as a standard approach for measuring the moisture content of high-moisture materials such as solid and semi-solid foods.Loss-on-drying method provides reliable results,wh...The loss-on-drying method has been widely used as a standard approach for measuring the moisture content of high-moisture materials such as solid and semi-solid foods.Loss-on-drying method provides reliable results,whilst usually labor-intensive and time-consuming.This paper presents a novel algorithm for predicting the moisture content of meats based on the loss-on drying method.The proposed approach developed a drying kinetics model of meats based on Fick’s Second Law and designed a prediction algorithm for meat moisture content using the least-squares method.The predicted results were compared with the official method recommended by the Association of Official Analytical Chemists(AOAC).When the moisture content of meat samples(beef and pork)was varied from 69.46%to 74.21%,the relative error of the meat moisture content(MMC)calculated by the proposed algorithm was 0.0017-0.0117,the absolute errors were less than 1%.The testing time was about 40.18%-56.87%less than the standard detection procedure.展开更多
基金The financial supports provided by the National Natural Science Foundation of China(Grant Nos.41230636,41372265,41427801)National Basic Research Program of China(973 Project)(Grant No.2011CB710605)
文摘Distributed temperature sensing(DTS)using heated cables has been recently developed for distributed monitoring of in-situ soil moisture content.In this method,the thermal and electrical properties of heated cables have a significant influence on the measurement accuracy of soil moisture content.In this paper,the performances of two heated cables,i.e.the carbon-fiber heated cable(CFHC)and the metalnet heated cable(MNHC),are studied in the laboratory.Their structures,uniformity in the axial direction,measurement accuracy and suitability are evaluated.The test results indicate that the MNHC has a better uniformity in the axial direction than CFHC.Both CFHC and MNHC have high measurement accuracy.The CFHC is more suitable for short-distance measurement(500 m),while the MNHC can be used for longdistance measurement(>500 m).
基金Supported by the National Natural Science Foundation of China(51275145)
文摘According to the existing method including testing the frequency and establishing the relationship between moisture content and frequency, a corresponding instrument was designed. In order to further improve the accuracy and rapidity of the system, a new approach to describe the relationship between the measurement error and the temperature was proposed. The error band could be obtained and divided into several parts(based on the range of temperature) to indicate the error value that should compensate the grain moisture content for the changes in temperature. By calculating the error band at the maximum and the minimum operating temperatures, as well as by determining the error compensation value from the error band based on the measurement moisture content, the final effective result was derived.
基金This work was financially supported the National Natural Science Foundation of China (No.50376063) and the Chinese NationalKey Foundation Research Subject (No.G2000026306)
文摘The measurements of temperature and moisture content of a wet porous material were accomplished on the micro-seconds scale. The temperature wave was observed when the wet porous material was heated by short-pulsed laser with high power. It firstly revealed that the moisture content of wet porous material rapidly rises twice in one laser irradiation. The influences of laser parameters, the thickness and initial moisture content of the wet porous material on its temperature and moisture content were investigated.
基金The financial supports provided by the National Natural Science Foundation of China(Grant Nos.41230636,41372265,41427801)National Basic Research Program of China(973 Project)(Grant No.2011CB710605)
文摘Moisture content is a fundamental physical index that quantifies soil property and is closely associatedwith the hydrological, ecological and engineering behaviors of soil. To measure in-situ soil moisturecontents, a distributed measurement system for in-situ soil moisture content (SM-DTS) is introduced.The system is based on carbon-fiber heated cable (CFHC) technology that has been developed to enhancethe measuring accuracy of in-situ soil moisture content. Using CFHC technique, a temperature characteristicvalue (Tt) can be defined from temperatureetime curves. A relationship among Tt, soil thermalimpedance coefficient and soil moisture content is then established in laboratory. The feasibility of theSM-DTS technology to provide distributed measurements of in-situ soil moisture content is verifiedthrough field tests. The research reported herein indicates that the proposed SM-DTS is capable ofmeasuring in-situ soil moisture content over long distances and large areas.
基金This work was supported in part by the National Natural Science Foundation of China(Grant 61663039)the National Natural Science Foundation of China(Grant 51775185)Equipment and materials for the research were provided by the Natural Science Foundation of Ningxia Hui Autonomous Region(Grant 2020AAC03008).
文摘The loss-on-drying method has been widely used as a standard approach for measuring the moisture content of high-moisture materials such as solid and semi-solid foods.Loss-on-drying method provides reliable results,whilst usually labor-intensive and time-consuming.This paper presents a novel algorithm for predicting the moisture content of meats based on the loss-on drying method.The proposed approach developed a drying kinetics model of meats based on Fick’s Second Law and designed a prediction algorithm for meat moisture content using the least-squares method.The predicted results were compared with the official method recommended by the Association of Official Analytical Chemists(AOAC).When the moisture content of meat samples(beef and pork)was varied from 69.46%to 74.21%,the relative error of the meat moisture content(MMC)calculated by the proposed algorithm was 0.0017-0.0117,the absolute errors were less than 1%.The testing time was about 40.18%-56.87%less than the standard detection procedure.