期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Bionic Attitude Transformation Combined with Closed Motion for a Free Floating Space Robot 被引量:1
1
作者 Zhanpeng Sun Yongjin Lu +1 位作者 Lixian Xu Liang Wang 《Journal of Beijing Institute of Technology》 EI CAS 2018年第1期118-126,共9页
In order to realize the small error attitude transformation of a free floating space robot,a new method of three degrees of freedom( DOF) attitude transformation was proposed for the space robot using a bionic joint... In order to realize the small error attitude transformation of a free floating space robot,a new method of three degrees of freedom( DOF) attitude transformation was proposed for the space robot using a bionic joint. A general kinematic model of the space robot was established based on the law of linear and angular momentum conservation. A combinational joint model was established combined with bionic joint and closed motion. The attitude transformation of planar,two DOF and three DOF is analyzed and simulated by the model,and it is verified that the feasibility of attitude transformation in three DOF space. Finally,the specific scheme of disturbance elimination in attitude transformation is presented and simulation results are obtained.Therefore,the range of application field of the bionic joint model has been expanded. 展开更多
关键词 double rigid bodies model bionic mechanism closed motion attitude transformation eliminating disturbance
下载PDF
MSSSA:a multi-strategy enhanced sparrow search algorithm for global optimization 被引量:2
2
作者 Kai MENG Chen CHEN Bin XIN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2022年第12期1828-1847,共20页
The sparrow search algorithm(SSA) is a recent meta-heuristic optimization approach with the advantages of simplicity and flexibility. However, SSA still faces challenges of premature convergence and imbalance between ... The sparrow search algorithm(SSA) is a recent meta-heuristic optimization approach with the advantages of simplicity and flexibility. However, SSA still faces challenges of premature convergence and imbalance between exploration and exploitation, especially when tackling multimodal optimization problems. Aiming to deal with the above problems, we propose an enhanced variant of SSA called the multi-strategy enhanced sparrow search algorithm(MSSSA) in this paper. First, a chaotic map is introduced to obtain a high-quality initial population for SSA, and the opposition-based learning strategy is employed to increase the population diversity. Then, an adaptive parameter control strategy is designed to accommodate an adequate balance between exploration and exploitation. Finally, a hybrid disturbance mechanism is embedded in the individual update stage to avoid falling into local optima. To validate the effectiveness of the proposed MSSSA, a large number of experiments are implemented, including 40 complex functions from the IEEE CEC2014 and IEEE CEC2019 test suites and 10 classical functions with different dimensions. Experimental results show that the MSSSA achieves competitive performance compared with several state-of-the-art optimization algorithms. The proposed MSSSA is also successfully applied to solve two engineering optimization problems. The results demonstrate the superiority of the MSSSA in addressing practical problems. 展开更多
关键词 Swarm intelligence Sparrow search algorithm Adaptive parameter control strategy Hybrid disturbance mechanism Optimization problems
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部