Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad appli...Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed.展开更多
Mechanical alloying (MA) was employed to produce supersaturated solid solutions of Fe1-xCux,which is virtually immiscible under an equilibrium condition at ambjent temperature. The X-ray diffraction results show that ...Mechanical alloying (MA) was employed to produce supersaturated solid solutions of Fe1-xCux,which is virtually immiscible under an equilibrium condition at ambjent temperature. The X-ray diffraction results show that the solutions formed in the concentration ranges of x≤0.1 5 and x≥0.40 are of bcc structure of iron and fcc structure of copper. respectively. For the region in between.however, the alloy obtained is a mixture of bcc plus fcc phases. The Mossbauer spectrum of the solid solution of a single phase could be fitted by two sub-spectra with hyperfine magnetic fields of 200 and 250 kOe. respectively. suggesting that there must exist two forms of coordination in the solution. While to fit the spectrum for the solution with mixed structu re. three Sub-spectra. including a spectrum of α-Fe, should be used. The variation of the Mossbauer spectra of Fe60Cu40 with milling time as well as annealing temperature was systematically studied. This may be ascribed to the changes of the number of nearest neighboring atoms of iron in the processes of formation and decomposition of the solid solution during milling and annealing展开更多
A method combining theoretical analysis with experiment is adopted and the flowing process of Ti-48A1-2Cr-2Nb alloy melt poured in a permanent mould during the centrifugal casting process has been analyzed. A mathemat...A method combining theoretical analysis with experiment is adopted and the flowing process of Ti-48A1-2Cr-2Nb alloy melt poured in a permanent mould during the centrifugal casting process has been analyzed. A mathematical model of the filling process is established and the forming mechanism of internal gaseous defect is summarized. The results of calculation show that the melt fills the mould with varying cross-section area and inclined angle. The filling speed of the cross-section is a function of filling time. The cross-section area is directly proportional to the filling speed and the inclined angle is inversely proportional to the filling speed at a given rotating speed of the platform. Both of them changes more obvious near the mould entrance. The gaseous defect can be formed in several ways and the centrifugal field has an important influence on the formation of the defect. In addition, the filling process in centrifugal field has been verified by wax experiments and the theoretical analysis are consistent with experimental results.展开更多
Mg matrix composites with SiC particles ranging from 5vol%-25vol% were prepared using stirring casting method. Die casting, squeezing casting, and extrusion were applied for inhibiting or eliminating the defects such ...Mg matrix composites with SiC particles ranging from 5vol%-25vol% were prepared using stirring casting method. Die casting, squeezing casting, and extrusion were applied for inhibiting or eliminating the defects such as gas porosity and shrinkage void. Through die casting and squeezing casting, most of the defects in Mg matrix composites could be eliminated, but the mechanical properties were improved limitedly. On the other hand, after hot extrusion, not only most of the defects of as-cast composites ingots were eliminated, but also the mechanical properties were improved markedly. With the addition of SiC, the tensile strength, yield strength and elastic modulus of as extrusion SiCp/AZ61 composites increased remarkably, and the elongation decreased obviously.展开更多
This article presents a theory about the growth mechanism of bubble-screw dislocation of nodular graphite. Normally speaking, the crystallizing procedure of most nodular graphite is as follows: firstly, graphite gener...This article presents a theory about the growth mechanism of bubble-screw dislocation of nodular graphite. Normally speaking, the crystallizing procedure of most nodular graphite is as follows: firstly, graphite generates nuclei on bubbles and fills them (mainly in the way of screw dislocation) forming the complete nuclei of nodular graphite-graphite bubble nuclei. Then, graphite grows up in the way of screw dislocation. Two important conditions concerning the production of nodular graphite are: (a) there is a relatively big interfacial energy between ferro liquid and graphite, and the one between ferro liquid and graphite prismatic plane is bigger than that between ferro liquid and graphite basal plane; (b) there are a certain amount of micro-bubbles in the melt.展开更多
A new thiosemicarbazone compound derived from 1-phenyl-3-methyl-4-(2-thenoyl) pyrazolone-5 (HPMTP) and thiosemicarbazide has been synthesized and characterized by IR, H- NMR, MS, elemental analysis, UV and single-...A new thiosemicarbazone compound derived from 1-phenyl-3-methyl-4-(2-thenoyl) pyrazolone-5 (HPMTP) and thiosemicarbazide has been synthesized and characterized by IR, H- NMR, MS, elemental analysis, UV and single-crystal X-ray diffraction. The compound crystallizes in monoclinic system, Cc space group with a = 7.5925(8), b = 20.263(2), c = 11.4669(13) A, r= 107.825(8)°, V = 1679.5(3) A3, Z = 4, R = 0.0316 and wR = 0.0687. The results of antibacterial activity test against Escherichia coli and Bacillus subtilis indicate that the compound possesses the same antibacterial activity as the contrast (Norfloxacin). Theoretical study of the forming mechanism to the title compound at the RHF/6-31G(d) level shows that there are two steps. The distal amino group of thiosemicarbazide is added to the 4-carbonyl group of HPMTP which forms TM. Then a dehydration reaction occurs in TM and generates a stable product PC.展开更多
Cast molding process has provided a reliable, simple and cost-effective way to fabricate micro structures since decades ago. In order to obtain structures with fine, dense and deep nano-size features by cast molding, ...Cast molding process has provided a reliable, simple and cost-effective way to fabricate micro structures since decades ago. In order to obtain structures with fine, dense and deep nano-size features by cast molding, it is necessary to study the forming mechanism in the process. In this paper, based on major steps of cast molding, filling models of liquid are established and solved; and the forming mechanism of liquid is revealed. Moreover, the scale effect between the liquid and the cavity on the filling velocity of liquid is studied.It is also interesting to find out that the wettability of liquid on the cavity may be changed from wetting to dewetting depends on the pressure difference. Finally, we experimentally verify some of our modeling results on the flowing and filling state of the liquid during the cast molding process.展开更多
Arc pressure is the key influencing factor to forming of molten pool. Countering the characteristic of tungsten inert gas arc welding with micro gap for tantalum sheet, according to the fundament of arc physics, a dis...Arc pressure is the key influencing factor to forming of molten pool. Countering the characteristic of tungsten inert gas arc welding with micro gap for tantalum sheet, according to the fundament of arc physics, a distribution model of arc pressure and forming mechanism of molten pool with micro butt gap are proposed, and the influences of arc pressure on forming of molten pool are discussed. Experimental researches for the dynamic formation process of weld molten pool by using high-speed vidicon camera show that when butt gap is appropriate, that is from 0. 1 to 0. 15 mm, molten metals formed on two workpiece uplift and grow up first, then are fused and form uniform molten pool finally.展开更多
In two-phase TiAl alloys, the lamellar structures are of special interest and importance since they are so common and persistent. not only under as-cast conditions but also after thermal treatment. However. the lamell...In two-phase TiAl alloys, the lamellar structures are of special interest and importance since they are so common and persistent. not only under as-cast conditions but also after thermal treatment. However. the lamellar structures are still poor in ductility,although they are beneficial for toughness and high temperature strength. This article will review the recent progress made in understanding the basic mechanical properties of the γ and α2 phases which comprise the two-phase alloys in Iamellar form, and discuss how an improved balance of strength and ductillty in the lamellar form may be achieved展开更多
This work recommends methods of construction of equations of motion of mechanical systems in matrix form. The use of a matrix form allows one to write an equation of dynamics in compact form, convenient for the in ves...This work recommends methods of construction of equations of motion of mechanical systems in matrix form. The use of a matrix form allows one to write an equation of dynamics in compact form, convenient for the in vestigation of multidimensional mechanical systems with the help of computers. Use is made of different methods of constructing equations of motion, based on the basic laws of dynamics as well as on the principles of D Alambert-Le range, Hamilton-Ostrogradski and Gauss.展开更多
In order to investigate the draping behavior of non-crimp fabrics(NCFs), two types of carbon NCFs with tricot-chain stitches or chain stitches were formed on a hemispherical mould via a stretch forming process. The ...In order to investigate the draping behavior of non-crimp fabrics(NCFs), two types of carbon NCFs with tricot-chain stitches or chain stitches were formed on a hemispherical mould via a stretch forming process. The shear angle and forming defects of the fabrics were measured on the hemisphere, under different blank holder forces(BHFs). The results showed that increasing BHF could enhance the shear angle slightly, reduce the asymmetry for the deformation of the fabrics, and change the main type of the process-induced defects. Besides, compression tests were performed on the corresponding composite components. By analyzing the change of fiber volume fraction and structural parameters of the textile reinforcements, the effects of draping behavior of NCFs on the mechanical performance of the composites were studied. The results reveal that draping process has distinguishable impacts on the mechanical properties of the final components, which is closely related to the stitching pattern of the NCFs.展开更多
Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the m...Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the metal material deposition. Up to now, the studies of micro EDM deposition process focused mainly on the researches of deposition process, namely the effects of discharge parameters in deposition process on the deposition rate or deposition quality. The research of the formation of micro structures with different discharge energy density still lacks. With proper conditions and only by the z-axis feeding in vertical direction, a novel shape of micro spiral structure can be deposited, with 0.11 mm in wire diameter, 0.20 mm in outside diameter, and 3.78 mm in height. Then some new deposition strategies including angular deposition and against the gravity deposition were also successful. In order to find the forming mechanism of the spiral structures, the numerical simulation of the transient temperature distribution on the discharge point was conducted by using the finite-element method(FEM). The results show that there are two major factors lead to the forming of the spiral structures. One is the different material removal form of tool electrode according with the discharge energy density, the other is the influenced degree of the movement of the removed material particles in the discharge gap. The more the energy density in single discharge is, the smaller the mass of the removed material particles is, and the easier the movements of which will be changed to form an order tendency. The fine texture characteristics of the deposited micro spiral structures were analyzed by the energy spectrum analysis and the metallographic analysis. It shows that the components of the deposited material are almost the same as those of the tool electrode. Moreover the deposited material has the brass metallic luster in the longitudinal profile and has compact bonding with the base material. This research is useful to understand the micro-process of micro EDM deposition better and helpful to increase the controllability of the new EDM method for fabrication of micro structures.展开更多
Understanding the spatiotemporal patterns of three-dimensional urban forms,especially building height,can have important implications for improving urban air quality and mitigating the urban heat island effect by opti...Understanding the spatiotemporal patterns of three-dimensional urban forms,especially building height,can have important implications for improving urban air quality and mitigating the urban heat island effect by optimizing urban planning and management policies.This study investigated building height evolution and its influencing factors over approximately half a century(1960–2017)in Guangzhou,China.The results indicated that the logarithmic declines in height,quantity,and area of urban buildings followed Zapf’s law,which restricts the three-dimensional shape of the urban form.The urban building height decreased from the center to the periphery of the city and decreased with decreasing altitude and increasing distance from main roads.These characteristics constituted the three main spatial differentiation rules of building height in the central district of Guangzhou,and all exhibited a logarithmic decrease,which gradually strengthened over time.The development of a double-layered height structure of low-rise and high-rise buildings between 1990 and 2017 was a notable manifestation of the increase in vertical urban height over time.The three factors of city center,altitude,and accessibility,which represent centrality,low relief,proximity to water,and proximity to road networks,highlighted the roles of traffic accessibility and commercial attraction in building height evolution.The importance of location macroscopically depends on the combined effect of the geographical pattern,urban planning,and market forces of cities located on a plain near hill or by a river.The principle of profit orientation restricted spatiotemporal building height patterns.展开更多
Layer-block tectonics (LBT) concept, with the core of pluralistic geodynamic outlook and multilayer-sliding tectonic outlook, is one of new keys to study 3-dimensional solid and its 4-dimensional evolution history o...Layer-block tectonics (LBT) concept, with the core of pluralistic geodynamic outlook and multilayer-sliding tectonic outlook, is one of new keys to study 3-dimensional solid and its 4-dimensional evolution history of global tectonic system controlled by global geodynamics system. The LBT concept is applied to study the lithospheric tectonics of the southern South China Sea (SCS). Based on the analysis of about 30 000 km of geophysical and geological data, some layer-blocks in the Nansha micro-plate can be divided as Nansha ultra-crustal layer-block, Zengmu crustal layer-block, Nanwei (Rifleman bank)-Andu (Ardasier bank) and Liyue (Reed bank) North Palawan crustal layer-blocks, Andu-Bisheng and Liyue-Banyue basemental layer-blocks. The basic characteristics of the basemental layer-blocks have been dicussed, and three intra-plate basin groups are identified. The intra-plate basins within Nansha micro-plate can be divided into three basin groups of Nanwei- Andu, Feixin-Nanhua, and Liyue-North Palawan based on the different geodynamics. In the light of pluralistic geodynamic concept, the upheaving force induced by the mid-crust plastic layer is proposed as the main dynamical force which causes the formation of the intra-plate basins within the Nansha micro-plate. Finally, models of a face-to-face dip-slip detachment of basemental layerblock and a unilateral dip-slip-detachment of basemental layer-block are put forward for the forming mechanisms of the Nanwei Andu and Liyue-North Palawan intra-plate basin groups, respectively.展开更多
Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using fie...Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using field survey data, sample testing, and high-resolution remote sensing images, the evolution of the Erlian mudflow fans are analyzed. The data show significant differences between fans on either side of the YR. On the right bank, fans are dilute debris flows consisting of sand and gravel. On the left bank, fans are viscosity mudflows consisting of red clay. The composition and formation processes of the left bank platforms indicate a rainfall-induced pluvial landscape. Fan evolution can be divided into two stages: early-stage fans pre-date 16 ka B.P., and formed during the last deglaciation; late-stage fans post-date 8 ka B.P.. Both stages were induced by climate change. The data indicate that during the Last Glacial Maximum, the northeastern Tibetan Plateau experienced a cold and humid climate characterized by high rainfall. From 16–8 ka, the YR cut through the Erlian early mudflow fan, resulting in extensive erosion. Since 8 ka, the river channel has migrated south by at least 1.25 km, and late stage mudflow fan formation has occurred.展开更多
Considering the influence of backward flowing molten jet observed by experiments, a new pool surface deformation formula and droplets heat content model are used to investigate the humping formation mechanism during h...Considering the influence of backward flowing molten jet observed by experiments, a new pool surface deformation formula and droplets heat content model are used to investigate the humping formation mechanism during high-speed gas metal arc (GMA) welding. Three-dimensional geometry of the humping bead is numerically simulated only if some extra force and heat acted at the rear part of weld pool are taken into account in the model. It has proved that both the momentum and heat content of backward flowing molten jet must be appropriately treated to quantitatively analyze the physical mechanism of the humping phenomenon.展开更多
The present work aims to compare the amorphous phase forming ability of ternary and quaternary Al based alloys (Al86Ni8Y6, Al86GNi6Y6Co2, Al86NigLa6 and Al86Ni8Y45La15) synthesized via mechanical alloying by varying...The present work aims to compare the amorphous phase forming ability of ternary and quaternary Al based alloys (Al86Ni8Y6, Al86GNi6Y6Co2, Al86NigLa6 and Al86Ni8Y45La15) synthesized via mechanical alloying by varying the composition, i.e. fully or partially replacing rare earth (RE) and transition metal (TM) elements based on similar atomic radii and coordination number. X-ray diffraction and high resolution transmission electron microscopy study revealed that the amorphization process occurred through formation of various intermetallic phases and nanocrystalline FCC Al. Fully amorphous phase was obtained for the alloys not containing lanthanum, whereas the other alloys containing La showed partial amorphization with reappearance of intermetallic phases attributed to mechanical crystallization. Differential scanning calorimetry study confirmed better thermal stability with wider transformation temperature for the alloys without La.展开更多
Two complexes of α methacrylate copper(Ⅱ) with imidazole, Cu[CH 2C(CH 3)COO] 2· (imH) 2(1) and Cu 2[CH 2C(CH 3)COO] 4(imH) 2(2) were prepared and characterized. The single crystal X ray diffra...Two complexes of α methacrylate copper(Ⅱ) with imidazole, Cu[CH 2C(CH 3)COO] 2· (imH) 2(1) and Cu 2[CH 2C(CH 3)COO] 4(imH) 2(2) were prepared and characterized. The single crystal X ray diffraction study of complex 1 showed that the copper(Ⅱ) atom in the symmetric centre of the square planar environment was coordinated by two monodentate α methacrylate groups and two imidazole ligands that were in trans position with each other. Each molecular unit is linked with four neighbouring units by means of hydrogen bond interactions, forming a two dimensional supermolecular compound( d N…O =0 278 1 nm). Complex 1 crystallizes in monoclinic, space group P2 1/n with a =1 023 94(12) nm, b =0 842 94(8) nm, c =1 079 35(10) nm, β=117 231(7)°, Z =2. The forming mechanism of the complexes was discussed.展开更多
The Northern Shaanxi salt basin locates in the east of the Ordos basin.In this area,the thick layer salt sediment exists in the Majiagou Formation of Ordovician.Especial in the sixth subsection of the Majiagou fifth m...The Northern Shaanxi salt basin locates in the east of the Ordos basin.In this area,the thick layer salt sediment exists in the Majiagou Formation of Ordovician.Especial in the sixth subsection of the Majiagou fifth member,it展开更多
基金supported by the National Key R&D Program of China(No.2022YFE0121300)the Introduction Plan for High end Foreign Experts,China(No.G2023105001L)the Young Foreign Talent Program,China(No.QN2023105001L).
文摘Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed.
文摘Mechanical alloying (MA) was employed to produce supersaturated solid solutions of Fe1-xCux,which is virtually immiscible under an equilibrium condition at ambjent temperature. The X-ray diffraction results show that the solutions formed in the concentration ranges of x≤0.1 5 and x≥0.40 are of bcc structure of iron and fcc structure of copper. respectively. For the region in between.however, the alloy obtained is a mixture of bcc plus fcc phases. The Mossbauer spectrum of the solid solution of a single phase could be fitted by two sub-spectra with hyperfine magnetic fields of 200 and 250 kOe. respectively. suggesting that there must exist two forms of coordination in the solution. While to fit the spectrum for the solution with mixed structu re. three Sub-spectra. including a spectrum of α-Fe, should be used. The variation of the Mossbauer spectra of Fe60Cu40 with milling time as well as annealing temperature was systematically studied. This may be ascribed to the changes of the number of nearest neighboring atoms of iron in the processes of formation and decomposition of the solid solution during milling and annealing
文摘A method combining theoretical analysis with experiment is adopted and the flowing process of Ti-48A1-2Cr-2Nb alloy melt poured in a permanent mould during the centrifugal casting process has been analyzed. A mathematical model of the filling process is established and the forming mechanism of internal gaseous defect is summarized. The results of calculation show that the melt fills the mould with varying cross-section area and inclined angle. The filling speed of the cross-section is a function of filling time. The cross-section area is directly proportional to the filling speed and the inclined angle is inversely proportional to the filling speed at a given rotating speed of the platform. Both of them changes more obvious near the mould entrance. The gaseous defect can be formed in several ways and the centrifugal field has an important influence on the formation of the defect. In addition, the filling process in centrifugal field has been verified by wax experiments and the theoretical analysis are consistent with experimental results.
基金Funded by the Program for New Century Excellent Talents in University(NCET-12-1040)the National Natural Science Foundation of China(Nos.50901048 and 51174143)+2 种基金the Key Project of Chinese Ministry of Education(No.2012017)the Program Foundation of Ministry of Education of China(No.20101402110008)Natural Science Foundation of Shanxi(No.2010021022-5)
文摘Mg matrix composites with SiC particles ranging from 5vol%-25vol% were prepared using stirring casting method. Die casting, squeezing casting, and extrusion were applied for inhibiting or eliminating the defects such as gas porosity and shrinkage void. Through die casting and squeezing casting, most of the defects in Mg matrix composites could be eliminated, but the mechanical properties were improved limitedly. On the other hand, after hot extrusion, not only most of the defects of as-cast composites ingots were eliminated, but also the mechanical properties were improved markedly. With the addition of SiC, the tensile strength, yield strength and elastic modulus of as extrusion SiCp/AZ61 composites increased remarkably, and the elongation decreased obviously.
文摘This article presents a theory about the growth mechanism of bubble-screw dislocation of nodular graphite. Normally speaking, the crystallizing procedure of most nodular graphite is as follows: firstly, graphite generates nuclei on bubbles and fills them (mainly in the way of screw dislocation) forming the complete nuclei of nodular graphite-graphite bubble nuclei. Then, graphite grows up in the way of screw dislocation. Two important conditions concerning the production of nodular graphite are: (a) there is a relatively big interfacial energy between ferro liquid and graphite, and the one between ferro liquid and graphite prismatic plane is bigger than that between ferro liquid and graphite basal plane; (b) there are a certain amount of micro-bubbles in the melt.
基金supported by the National Natural Science Foundation of China(No.81303306)Natural Science Foundation of Tianjin(No.14JCQNJC06300)Science Development Foundation of Tianjin Agricultural College(No.2011N06)
文摘A new thiosemicarbazone compound derived from 1-phenyl-3-methyl-4-(2-thenoyl) pyrazolone-5 (HPMTP) and thiosemicarbazide has been synthesized and characterized by IR, H- NMR, MS, elemental analysis, UV and single-crystal X-ray diffraction. The compound crystallizes in monoclinic system, Cc space group with a = 7.5925(8), b = 20.263(2), c = 11.4669(13) A, r= 107.825(8)°, V = 1679.5(3) A3, Z = 4, R = 0.0316 and wR = 0.0687. The results of antibacterial activity test against Escherichia coli and Bacillus subtilis indicate that the compound possesses the same antibacterial activity as the contrast (Norfloxacin). Theoretical study of the forming mechanism to the title compound at the RHF/6-31G(d) level shows that there are two steps. The distal amino group of thiosemicarbazide is added to the 4-carbonyl group of HPMTP which forms TM. Then a dehydration reaction occurs in TM and generates a stable product PC.
基金financially supported by NSFC under Grant No. 90923040China’s National "973" Program under Grant No. 2009CB724202
文摘Cast molding process has provided a reliable, simple and cost-effective way to fabricate micro structures since decades ago. In order to obtain structures with fine, dense and deep nano-size features by cast molding, it is necessary to study the forming mechanism in the process. In this paper, based on major steps of cast molding, filling models of liquid are established and solved; and the forming mechanism of liquid is revealed. Moreover, the scale effect between the liquid and the cavity on the filling velocity of liquid is studied.It is also interesting to find out that the wettability of liquid on the cavity may be changed from wetting to dewetting depends on the pressure difference. Finally, we experimentally verify some of our modeling results on the flowing and filling state of the liquid during the cast molding process.
文摘Arc pressure is the key influencing factor to forming of molten pool. Countering the characteristic of tungsten inert gas arc welding with micro gap for tantalum sheet, according to the fundament of arc physics, a distribution model of arc pressure and forming mechanism of molten pool with micro butt gap are proposed, and the influences of arc pressure on forming of molten pool are discussed. Experimental researches for the dynamic formation process of weld molten pool by using high-speed vidicon camera show that when butt gap is appropriate, that is from 0. 1 to 0. 15 mm, molten metals formed on two workpiece uplift and grow up first, then are fused and form uniform molten pool finally.
文摘In two-phase TiAl alloys, the lamellar structures are of special interest and importance since they are so common and persistent. not only under as-cast conditions but also after thermal treatment. However. the lamellar structures are still poor in ductility,although they are beneficial for toughness and high temperature strength. This article will review the recent progress made in understanding the basic mechanical properties of the γ and α2 phases which comprise the two-phase alloys in Iamellar form, and discuss how an improved balance of strength and ductillty in the lamellar form may be achieved
文摘This work recommends methods of construction of equations of motion of mechanical systems in matrix form. The use of a matrix form allows one to write an equation of dynamics in compact form, convenient for the in vestigation of multidimensional mechanical systems with the help of computers. Use is made of different methods of constructing equations of motion, based on the basic laws of dynamics as well as on the principles of D Alambert-Le range, Hamilton-Ostrogradski and Gauss.
基金Funded by the National Natural Science Foundation of China(No.51203144)
文摘In order to investigate the draping behavior of non-crimp fabrics(NCFs), two types of carbon NCFs with tricot-chain stitches or chain stitches were formed on a hemispherical mould via a stretch forming process. The shear angle and forming defects of the fabrics were measured on the hemisphere, under different blank holder forces(BHFs). The results showed that increasing BHF could enhance the shear angle slightly, reduce the asymmetry for the deformation of the fabrics, and change the main type of the process-induced defects. Besides, compression tests were performed on the corresponding composite components. By analyzing the change of fiber volume fraction and structural parameters of the textile reinforcements, the effects of draping behavior of NCFs on the mechanical performance of the composites were studied. The results reveal that draping process has distinguishable impacts on the mechanical properties of the final components, which is closely related to the stitching pattern of the NCFs.
基金supported by National Natural Science Foundation of China(Grant No.50675049)
文摘Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the metal material deposition. Up to now, the studies of micro EDM deposition process focused mainly on the researches of deposition process, namely the effects of discharge parameters in deposition process on the deposition rate or deposition quality. The research of the formation of micro structures with different discharge energy density still lacks. With proper conditions and only by the z-axis feeding in vertical direction, a novel shape of micro spiral structure can be deposited, with 0.11 mm in wire diameter, 0.20 mm in outside diameter, and 3.78 mm in height. Then some new deposition strategies including angular deposition and against the gravity deposition were also successful. In order to find the forming mechanism of the spiral structures, the numerical simulation of the transient temperature distribution on the discharge point was conducted by using the finite-element method(FEM). The results show that there are two major factors lead to the forming of the spiral structures. One is the different material removal form of tool electrode according with the discharge energy density, the other is the influenced degree of the movement of the removed material particles in the discharge gap. The more the energy density in single discharge is, the smaller the mass of the removed material particles is, and the easier the movements of which will be changed to form an order tendency. The fine texture characteristics of the deposited micro spiral structures were analyzed by the energy spectrum analysis and the metallographic analysis. It shows that the components of the deposited material are almost the same as those of the tool electrode. Moreover the deposited material has the brass metallic luster in the longitudinal profile and has compact bonding with the base material. This research is useful to understand the micro-process of micro EDM deposition better and helpful to increase the controllability of the new EDM method for fabrication of micro structures.
基金Under the auspices of National Natural Science Foundation of China(No.41771001)Science and Technology Planning Project Funds of Guangzhou(No.201704020136)。
文摘Understanding the spatiotemporal patterns of three-dimensional urban forms,especially building height,can have important implications for improving urban air quality and mitigating the urban heat island effect by optimizing urban planning and management policies.This study investigated building height evolution and its influencing factors over approximately half a century(1960–2017)in Guangzhou,China.The results indicated that the logarithmic declines in height,quantity,and area of urban buildings followed Zapf’s law,which restricts the three-dimensional shape of the urban form.The urban building height decreased from the center to the periphery of the city and decreased with decreasing altitude and increasing distance from main roads.These characteristics constituted the three main spatial differentiation rules of building height in the central district of Guangzhou,and all exhibited a logarithmic decrease,which gradually strengthened over time.The development of a double-layered height structure of low-rise and high-rise buildings between 1990 and 2017 was a notable manifestation of the increase in vertical urban height over time.The three factors of city center,altitude,and accessibility,which represent centrality,low relief,proximity to water,and proximity to road networks,highlighted the roles of traffic accessibility and commercial attraction in building height evolution.The importance of location macroscopically depends on the combined effect of the geographical pattern,urban planning,and market forces of cities located on a plain near hill or by a river.The principle of profit orientation restricted spatiotemporal building height patterns.
基金The National Basic Research Program of China ("973") under contract Nos 2009CB2194 and 2007CB411700the Major Knowledge Innovation Programs of the Chinese Academy of Sciences under contract No. kzcx2-yw-203-01+2 种基金the National Natural Science Foundation of China of China under contract No. 40676039the National Program of Sustaining Science and Technology of China under contract No. 2006BAB19B02the Program of the Ministry of Land and Natural Resources of China under contract No. GT-YQ-QQ-2008-1-02
文摘Layer-block tectonics (LBT) concept, with the core of pluralistic geodynamic outlook and multilayer-sliding tectonic outlook, is one of new keys to study 3-dimensional solid and its 4-dimensional evolution history of global tectonic system controlled by global geodynamics system. The LBT concept is applied to study the lithospheric tectonics of the southern South China Sea (SCS). Based on the analysis of about 30 000 km of geophysical and geological data, some layer-blocks in the Nansha micro-plate can be divided as Nansha ultra-crustal layer-block, Zengmu crustal layer-block, Nanwei (Rifleman bank)-Andu (Ardasier bank) and Liyue (Reed bank) North Palawan crustal layer-blocks, Andu-Bisheng and Liyue-Banyue basemental layer-blocks. The basic characteristics of the basemental layer-blocks have been dicussed, and three intra-plate basin groups are identified. The intra-plate basins within Nansha micro-plate can be divided into three basin groups of Nanwei- Andu, Feixin-Nanhua, and Liyue-North Palawan based on the different geodynamics. In the light of pluralistic geodynamic concept, the upheaving force induced by the mid-crust plastic layer is proposed as the main dynamical force which causes the formation of the intra-plate basins within the Nansha micro-plate. Finally, models of a face-to-face dip-slip detachment of basemental layerblock and a unilateral dip-slip-detachment of basemental layer-block are put forward for the forming mechanisms of the Nanwei Andu and Liyue-North Palawan intra-plate basin groups, respectively.
基金financially supported by the National Nature Science Foundation of China under Grant No.41372333,41172158China Geological Survey(grant No.1212011220123)
文摘Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using field survey data, sample testing, and high-resolution remote sensing images, the evolution of the Erlian mudflow fans are analyzed. The data show significant differences between fans on either side of the YR. On the right bank, fans are dilute debris flows consisting of sand and gravel. On the left bank, fans are viscosity mudflows consisting of red clay. The composition and formation processes of the left bank platforms indicate a rainfall-induced pluvial landscape. Fan evolution can be divided into two stages: early-stage fans pre-date 16 ka B.P., and formed during the last deglaciation; late-stage fans post-date 8 ka B.P.. Both stages were induced by climate change. The data indicate that during the Last Glacial Maximum, the northeastern Tibetan Plateau experienced a cold and humid climate characterized by high rainfall. From 16–8 ka, the YR cut through the Erlian early mudflow fan, resulting in extensive erosion. Since 8 ka, the river channel has migrated south by at least 1.25 km, and late stage mudflow fan formation has occurred.
基金The authors are grateful to the financial support for this project from the National Natural Science Foundation of China under grant No. 50675119.
文摘Considering the influence of backward flowing molten jet observed by experiments, a new pool surface deformation formula and droplets heat content model are used to investigate the humping formation mechanism during high-speed gas metal arc (GMA) welding. Three-dimensional geometry of the humping bead is numerically simulated only if some extra force and heat acted at the rear part of weld pool are taken into account in the model. It has proved that both the momentum and heat content of backward flowing molten jet must be appropriately treated to quantitatively analyze the physical mechanism of the humping phenomenon.
基金financial support obtained from the Science and Engineering Research Board,Department of Science & Technology,Government of India(SB/S3/ME/0044/2013)Sponsored Research and Industrial Consultancy,Indian Institute of Technology Kharagpur,India(GAF)
文摘The present work aims to compare the amorphous phase forming ability of ternary and quaternary Al based alloys (Al86Ni8Y6, Al86GNi6Y6Co2, Al86NigLa6 and Al86Ni8Y45La15) synthesized via mechanical alloying by varying the composition, i.e. fully or partially replacing rare earth (RE) and transition metal (TM) elements based on similar atomic radii and coordination number. X-ray diffraction and high resolution transmission electron microscopy study revealed that the amorphization process occurred through formation of various intermetallic phases and nanocrystalline FCC Al. Fully amorphous phase was obtained for the alloys not containing lanthanum, whereas the other alloys containing La showed partial amorphization with reappearance of intermetallic phases attributed to mechanical crystallization. Differential scanning calorimetry study confirmed better thermal stability with wider transformation temperature for the alloys without La.
文摘Two complexes of α methacrylate copper(Ⅱ) with imidazole, Cu[CH 2C(CH 3)COO] 2· (imH) 2(1) and Cu 2[CH 2C(CH 3)COO] 4(imH) 2(2) were prepared and characterized. The single crystal X ray diffraction study of complex 1 showed that the copper(Ⅱ) atom in the symmetric centre of the square planar environment was coordinated by two monodentate α methacrylate groups and two imidazole ligands that were in trans position with each other. Each molecular unit is linked with four neighbouring units by means of hydrogen bond interactions, forming a two dimensional supermolecular compound( d N…O =0 278 1 nm). Complex 1 crystallizes in monoclinic, space group P2 1/n with a =1 023 94(12) nm, b =0 842 94(8) nm, c =1 079 35(10) nm, β=117 231(7)°, Z =2. The forming mechanism of the complexes was discussed.
文摘The Northern Shaanxi salt basin locates in the east of the Ordos basin.In this area,the thick layer salt sediment exists in the Majiagou Formation of Ordovician.Especial in the sixth subsection of the Majiagou fifth member,it