The current research of a balanced hydraulic motor focuses on the characteristics of the motor with three planet gears.References of a balanced hydraulic motor with more than three planet gears are hardly found.In ord...The current research of a balanced hydraulic motor focuses on the characteristics of the motor with three planet gears.References of a balanced hydraulic motor with more than three planet gears are hardly found.In order to study the characteristics of a balanced hydraulic motor with planetary gear train that includes more than three planet gears,on the basis of analysis of the structure and working principle of a balanced hydraulic motor with planetary gear train,formulas are deduced for calculating the hydraulic motor's primary performance indexes such as displacement,unit volume displacement,flowrate fluctuation ratio,etc.Influences of the gears' tooth number on displacement and flowrate characteristics are analyzed.In order to guarantee the reliability of sealing capability,the necessary conditions that tooth number of the sun gear and the planet gears should satisfy are discussed.Selecting large unit volume displacement and small displacement fluctuation ratio as designing objectives,a balanced hydraulic motor with three planet gears and a common gear motor are designed under the conditions of same displacement,tooth addendum coefficien and clearance coefficient.By comparing the unit volume displacement and fluctuation ratio of the two motors,it can be seen that the balanced hydraulic motor with planetary gear train has the advantages of smaller fluctuation ratio and larger unit volume displacement.The results provide theoretical basis for choosing gear tooth-number of this kind of hydraulic motor.展开更多
The dynamic responses of roller gear indexing cam mechanism are investigated .With applying Lagarange equation and Gear method,motion equations of this mechanism including clearance,motor characteristic,torsion flexib...The dynamic responses of roller gear indexing cam mechanism are investigated .With applying Lagarange equation and Gear method,motion equations of this mechanism including clearance,motor characteristic,torsion flexibility are developed and solved.The results show that clearance affects primarily the response on turret,and has little effects on the responses on rotary table.At the same time,the velocity fluctuation of motor shaft is not serious for the existence of inertia of reducer,and the high frequency of velocity fluctuation of camshaft is related with the torsion stiffness of shaft and the clearance between pairs.展开更多
By investigation of the topological characteristics of the kinematic structure of Satellite Gear Mechanism (SGM) with graph theory, the graph model of SGM is analyzed, and a topological expression model between input ...By investigation of the topological characteristics of the kinematic structure of Satellite Gear Mechanism (SGM) with graph theory, the graph model of SGM is analyzed, and a topological expression model between input and output of SGM is established based on systematic design point. Meanwhile, the mathematical expression for SGM is deduced by integrating matrix theory and graph theory; thus, the topological characteristics of the kinematic structure of SGM can be converted into a matrix model, and the topological design problem of SGM into a matrix operation problem. In addition, a brief discussion about the measures for identification of isomorphism of the graph mode is made.展开更多
Harvesting energy from human movement and converting it into electricity is a promising method to address the issue of sustainable power supply for wearable electronic devices.Using traditional energy harvesters for p...Harvesting energy from human movement and converting it into electricity is a promising method to address the issue of sustainable power supply for wearable electronic devices.Using traditional energy harvesters for practical applications is difficult due to their low output power.In this paper,an energy harvester with high power and efficiency is reported based on the principle of electromagnetic induction.It adopts a tiny compound mechanism comprising symmetrical lever-sector gear,which can amplify the vertical displacement of the human heel of 1.44 times without affecting the flexibility and comfort of human movement.The lever-sector gear and gear acceleration mechanism can achieve high output power from the tiny vertical movements of the heel.The results demonstrated that the average power and energy harvesting efficiency of the device are 1 W and 63%,respectively.Moreover,combining a novel controllable electric switch and energy management circuit allows the energy harvester to be worn by individuals with different weights and functions as a continuous real-time power supply for various electronic devices(mobile phones,smartwatches,etc.).Therefore,this research provides a new approach for the highly efficient harvesting of human motion energy and sustainable power supply of wearable electronics.展开更多
At present,there is a lack of miniaturized and highly reliable plug seedling transplanting mechanism in flowerpots planting operation,in order to meet the needs of large displacement and high vertical uprightness for ...At present,there is a lack of miniaturized and highly reliable plug seedling transplanting mechanism in flowerpots planting operation,in order to meet the needs of large displacement and high vertical uprightness for flower transplanting,the paper combined the transmission characteristics of the non-circular gear planetary gear train with the swing flexibility of the cam gear and proposed a double planet carrier planetary gear transplanting mechanism.The linkage of the mechanism performs variable speed rotation relative to the first planet carrier,the linkage serves as the second planet carrier,and the transplanting arm performs variable speed swing relative to the linkage.A mathematical model of a single planetary carrier mechanism was first established using the method of open linkage group solution domain synthesis,then established the kinematic equations of the second planet carrier and the transplanting arm.The two parts are combined to form the mathematical solution model of the proposed mechanism.The initial trajectory was planned according to the trajectory requirements of seedlings planting operation,the non-circular gear pitch curve in the first planet carrier was obtained and the length of the first planet carrier is 120 mm.Then using the key points’angular deviation between the initial trajectory and the improved trajectory to obtain the cam parameters which driving the transplant arm,consequently determined the length of the second planet carrier is 69.25 mm and the length of the transplant arm is 112.4 mm.Finally,the prototype of the mechanism was manufactured,and the test verified the correctness of the design method of the double planet carrier planetary gear flower potting transplanting mechanism.The transplanting success rate of this mechanism reached 94.43%,and the plug seedlings planted in flowerpots had high uprightness.This research can provide a reference for the automatic development of research on flower transplanting machines.展开更多
Pennate muscle is characterized by muscle fibers that are oriented at a certain angle(pennation angle)relative to the muscle’s line of action and rotation during contraction.This fiber rotation amplifies the shorteni...Pennate muscle is characterized by muscle fibers that are oriented at a certain angle(pennation angle)relative to the muscle’s line of action and rotation during contraction.This fiber rotation amplifies the shortening velocity of muscle,to match loading conditions without any control system.This unique variable gearing mechanism,which characterized by Architecture Gear Ratio(AGR),is involves complex interaction among three key elements:muscle fibers,connective tissue,and the pennation angle.However,how three elements determine the AGR of muscle-like actuator is still unknown.This study introduces a Himisk actuator that arranges five contractile units at a certain pennation angle in a flexible matrix,the experiment and simulation results demonstrated that the proposed actuator could vary AGR automatically in response to variable loading conditions.Based on this actuator,we present a series of actuators by simulations with the varying pennation angle(P),elastic modulus of the flexible matrix(E),and number of contractile units(N)to analyze their effects on AGR,and their interaction by three-factor analysis of variance.The results demonstrated that P and N effect on the AGR significantly,while E effects on AGR slightly,which supported the idea that the P is the essential factor for the AGR,and N is also an important factor due to the capability of force generation.This provides a better understanding of mechanical behavior and an effective optimizing strategy to muscle-like soft actuator.展开更多
文摘The current research of a balanced hydraulic motor focuses on the characteristics of the motor with three planet gears.References of a balanced hydraulic motor with more than three planet gears are hardly found.In order to study the characteristics of a balanced hydraulic motor with planetary gear train that includes more than three planet gears,on the basis of analysis of the structure and working principle of a balanced hydraulic motor with planetary gear train,formulas are deduced for calculating the hydraulic motor's primary performance indexes such as displacement,unit volume displacement,flowrate fluctuation ratio,etc.Influences of the gears' tooth number on displacement and flowrate characteristics are analyzed.In order to guarantee the reliability of sealing capability,the necessary conditions that tooth number of the sun gear and the planet gears should satisfy are discussed.Selecting large unit volume displacement and small displacement fluctuation ratio as designing objectives,a balanced hydraulic motor with three planet gears and a common gear motor are designed under the conditions of same displacement,tooth addendum coefficien and clearance coefficient.By comparing the unit volume displacement and fluctuation ratio of the two motors,it can be seen that the balanced hydraulic motor with planetary gear train has the advantages of smaller fluctuation ratio and larger unit volume displacement.The results provide theoretical basis for choosing gear tooth-number of this kind of hydraulic motor.
文摘The dynamic responses of roller gear indexing cam mechanism are investigated .With applying Lagarange equation and Gear method,motion equations of this mechanism including clearance,motor characteristic,torsion flexibility are developed and solved.The results show that clearance affects primarily the response on turret,and has little effects on the responses on rotary table.At the same time,the velocity fluctuation of motor shaft is not serious for the existence of inertia of reducer,and the high frequency of velocity fluctuation of camshaft is related with the torsion stiffness of shaft and the clearance between pairs.
文摘By investigation of the topological characteristics of the kinematic structure of Satellite Gear Mechanism (SGM) with graph theory, the graph model of SGM is analyzed, and a topological expression model between input and output of SGM is established based on systematic design point. Meanwhile, the mathematical expression for SGM is deduced by integrating matrix theory and graph theory; thus, the topological characteristics of the kinematic structure of SGM can be converted into a matrix model, and the topological design problem of SGM into a matrix operation problem. In addition, a brief discussion about the measures for identification of isomorphism of the graph mode is made.
基金supported by the National Key R&D Program of China (Grant No.2019YFE0120300)the National Natural Science Foundation of China (Grant Nos.62171414,52175554,52205608,62171415 and62001431)+1 种基金the Fundamental Research Program of Shanxi Province (Grant Nos.20210302123059 and 20210302124610)the Program for the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No.2020L0316)。
文摘Harvesting energy from human movement and converting it into electricity is a promising method to address the issue of sustainable power supply for wearable electronic devices.Using traditional energy harvesters for practical applications is difficult due to their low output power.In this paper,an energy harvester with high power and efficiency is reported based on the principle of electromagnetic induction.It adopts a tiny compound mechanism comprising symmetrical lever-sector gear,which can amplify the vertical displacement of the human heel of 1.44 times without affecting the flexibility and comfort of human movement.The lever-sector gear and gear acceleration mechanism can achieve high output power from the tiny vertical movements of the heel.The results demonstrated that the average power and energy harvesting efficiency of the device are 1 W and 63%,respectively.Moreover,combining a novel controllable electric switch and energy management circuit allows the energy harvester to be worn by individuals with different weights and functions as a continuous real-time power supply for various electronic devices(mobile phones,smartwatches,etc.).Therefore,this research provides a new approach for the highly efficient harvesting of human motion energy and sustainable power supply of wearable electronics.
基金This work was financially supported by the National Key Research and Development Program of China(Grant No.2017YFD0700800)the National Natural Science Foundation of China(Grant No.32071909,No.51775512)+1 种基金Basic public welfare research projects of Zhejiang Province(Grant No.LGN19E050002,No.LGN20E050006)Fundamental Research Funds of Zhejiang Sci-Tech University(Grant No.2020Q013).
文摘At present,there is a lack of miniaturized and highly reliable plug seedling transplanting mechanism in flowerpots planting operation,in order to meet the needs of large displacement and high vertical uprightness for flower transplanting,the paper combined the transmission characteristics of the non-circular gear planetary gear train with the swing flexibility of the cam gear and proposed a double planet carrier planetary gear transplanting mechanism.The linkage of the mechanism performs variable speed rotation relative to the first planet carrier,the linkage serves as the second planet carrier,and the transplanting arm performs variable speed swing relative to the linkage.A mathematical model of a single planetary carrier mechanism was first established using the method of open linkage group solution domain synthesis,then established the kinematic equations of the second planet carrier and the transplanting arm.The two parts are combined to form the mathematical solution model of the proposed mechanism.The initial trajectory was planned according to the trajectory requirements of seedlings planting operation,the non-circular gear pitch curve in the first planet carrier was obtained and the length of the first planet carrier is 120 mm.Then using the key points’angular deviation between the initial trajectory and the improved trajectory to obtain the cam parameters which driving the transplant arm,consequently determined the length of the second planet carrier is 69.25 mm and the length of the transplant arm is 112.4 mm.Finally,the prototype of the mechanism was manufactured,and the test verified the correctness of the design method of the double planet carrier planetary gear flower potting transplanting mechanism.The transplanting success rate of this mechanism reached 94.43%,and the plug seedlings planted in flowerpots had high uprightness.This research can provide a reference for the automatic development of research on flower transplanting machines.
基金supported by the projects of National Natural Science Foundation of China(No.52075216,No.91948302 and No.91848204).
文摘Pennate muscle is characterized by muscle fibers that are oriented at a certain angle(pennation angle)relative to the muscle’s line of action and rotation during contraction.This fiber rotation amplifies the shortening velocity of muscle,to match loading conditions without any control system.This unique variable gearing mechanism,which characterized by Architecture Gear Ratio(AGR),is involves complex interaction among three key elements:muscle fibers,connective tissue,and the pennation angle.However,how three elements determine the AGR of muscle-like actuator is still unknown.This study introduces a Himisk actuator that arranges five contractile units at a certain pennation angle in a flexible matrix,the experiment and simulation results demonstrated that the proposed actuator could vary AGR automatically in response to variable loading conditions.Based on this actuator,we present a series of actuators by simulations with the varying pennation angle(P),elastic modulus of the flexible matrix(E),and number of contractile units(N)to analyze their effects on AGR,and their interaction by three-factor analysis of variance.The results demonstrated that P and N effect on the AGR significantly,while E effects on AGR slightly,which supported the idea that the P is the essential factor for the AGR,and N is also an important factor due to the capability of force generation.This provides a better understanding of mechanical behavior and an effective optimizing strategy to muscle-like soft actuator.