Over the past decade,multistable mechanical metamaterials have been widely investigated because of their novel shape reconfigurability and programmable energy landscape.The ability to reversibly reshape among diverse ...Over the past decade,multistable mechanical metamaterials have been widely investigated because of their novel shape reconfigurability and programmable energy landscape.The ability to reversibly reshape among diverse stable states with different energy levels represents the most important feature of the multistable mechanical metamaterials.We summarize main design strategies of multistable mechanical metamaterials,including those based on self-assembly scheme,snap-through instability,structured mechanism and geometrical frustration,with a focus on the number and controllability of accessible stable states.Then we concentrate on unusual mechanical properties of these multistable mechanical metamaterials,and present their applications in a wide range of areas,including tunable electromagnetic devices,actuators,robotics,and mechanical logic gates.Finally,we discuss remaining challenges and open opportunities of designs and applications of multistable mechanical metamaterials.展开更多
Auxetic mechanical metamaterials are artificially architected materials that possess negative Poisson’s ratio,demonstrating transversal contracting deformation under external vertical compression loading.Their physic...Auxetic mechanical metamaterials are artificially architected materials that possess negative Poisson’s ratio,demonstrating transversal contracting deformation under external vertical compression loading.Their physical properties are mainly determined by spatial topological configurations.Traditionally,classical auxetic mechanical metamaterials exhibit relatively lower mechanical stiffness,compared to classic stretching dominated architectures.Nevertheless,in recent years,several novel auxetic mechanical metamaterials with high stiffness have been designed and proposed for energy absorption,load-bearing,and thermal-mechanical coupling applications.In this paper,mechanical design methods for designing auxetic structures with soft and stiff mechanical behavior are summarized and classified.For soft auxetic mechanical metamaterials,classic methods,such as using soft basic material,hierarchical design,tensile braided design,and curved ribs,are proposed.In comparison,for stiff auxetic mechanical metamaterials,design schemes,such as hard base material,hierarchical design,composite design,and adding additional load-bearing ribs,are proposed.Multi-functional applications of soft and stiff auxetic mechanical metamaterials are then reviewed.We hope this study could provide some guidelines for designing programmed auxetics with specified mechanical stiffness and deformation abilities according to demand.展开更多
Multistable mechanical metamaterials are a type of mechanical metamaterials with special features,such as reusability,energy storage and absorption capabilities,rapid deformation,and amplified output forces.These meta...Multistable mechanical metamaterials are a type of mechanical metamaterials with special features,such as reusability,energy storage and absorption capabilities,rapid deformation,and amplified output forces.These metamaterials are usually realized by series and/or parallel of bistable units.They can exhibit multiple stable configurations under external loads and can be switched reversely among each other,thereby realizing the reusability of mechanical metamaterials and offering broad engineering applications.This paper reviews the latest research progress in the design strategy,manufacture and application of multistable mechanical metamaterials.We divide bistable structures into three categories based on their basic element types and provide the criterion of their bistability.Various manufacturing techniques to fabricate these multistable mechanical metamaterials are introduced,including mold casting,cutting,folding and three-dimensional/4D printing.Furthermore,the prospects of multistable mechanical metamaterials for applications in soft driving,mechanical computing,energy absorption and wave controlling are discussed.Finally,this paper highlights possible challenges and opportunities for future investigations.The review aims to provide insights into the research and development of multistable mechanical metamaterials.展开更多
Mechanical metamaterials can be defined as a class of architected materials that exhibit unprecedented mechanical properties derived from designed artificial architectures rather than their constituent materials.While...Mechanical metamaterials can be defined as a class of architected materials that exhibit unprecedented mechanical properties derived from designed artificial architectures rather than their constituent materials.While macroscale and simple layouts can be realized by conventional top-down manufacturing approaches,many of the sophisticated designs at various length scales remain elusive,due to the lack of adequate manufacturing methods.Recent progress in additive manufacturing(AM)has led to the realization of a myriad of novel metamaterial concepts.AM methods capable of fabricating microscale architectures with high resolution,arbitrary complexity,and high feature fidelity have enabled the rapid development of architected meta materials and drastically reduced the design-computation and experimental-validation cycle.This paper first provides a detailed review of various topologies based on the desired mechanical properties,including stiff,strong,and auxetic(negative Poisson’s ratio)metamaterials,followed by a discussion of the AM technologies capable of fabricating these metamaterials.Finally,we discuss current challenges and recommend future directions for AM and mechanical metamaterials.展开更多
We experimentally demonstrate a mechanically tunable metamaterials terahertz(THz) dual-band bandstop filter. The unit cell of the filter contains an inner aluminum circle and an outside aluminum Ohm-ring on high res...We experimentally demonstrate a mechanically tunable metamaterials terahertz(THz) dual-band bandstop filter. The unit cell of the filter contains an inner aluminum circle and an outside aluminum Ohm-ring on high resistance silicon substrate. The performance of the filter is simulated by finite-integration-time-domain(FITD) method. The sample is fabricated using a surface micromachining process and experimentally demonstrated using a THz time-domain-spectroscopy(TDS) system. The results show that, when the incident THz wave is polarized in y-axis, the filter has two intensive absorption peaks locating at 0.71 THz and 1.13 THz, respectively. The position of the high-frequency absorption peak and the amplitude of the low-frequency absorption peak can be simultaneously tuned by rotating the sample along its normal axis.The tunability of the high-frequency absorption peak is due to the shift of resonance frequency of two electrical dipoles,and that of the low-frequency absorption peak results from the effect of rotationally induced transparent. This tunable filter is very useful for switch, manipulation, and frequency selective detection of THz beam.展开更多
In recent years,materials with asymmetric mechanical response properties(mechanical Janus materials)have been found possess numerous potential applications,i.e.shock absorption and vibration isolation.In this study,we...In recent years,materials with asymmetric mechanical response properties(mechanical Janus materials)have been found possess numerous potential applications,i.e.shock absorption and vibration isolation.In this study,we propose a novel mechanical Janus lattice whose asymmetric mechanical response can be switched in orientation by a plug.Through finite element analysis and experimental verification,this lattice exhibits asymmetric displacement responses to symmetric forces.Furthermore,with such a plug structure inside,individual lattices can switch the orientation of asymmetry and thus achieve reprogrammable design of a mechanical structure with chained lattices.The reprogrammable asymmetry of this material will offer multiple functions in design of mechanical metamaterials.展开更多
Cellular structures are commonly used to design energy-absorbing structures,and origami structures are becominga prevalent method of cellular structure design.This paper proposes a foldable cellular structure based on...Cellular structures are commonly used to design energy-absorbing structures,and origami structures are becominga prevalent method of cellular structure design.This paper proposes a foldable cellular structure based on theWaterbomb origami pattern.The geometrical configuration of this structure is described.Quasi-static compressiontests of the origami tube cell of this cellular structure are conducted,and load-displacement relationship curvesare obtained.Numerical simulations are carried out to analyze the effects of aspect ratio,folding angle,thicknessand number of layers of origami tubes on initial peak force and specific energy absorption(SEA).Calculationformulas for initial peak force and SEA are obtained by the multiple linear regression method.The degree ofinfluence of each parameter on the mechanical properties of the single-layer tube cell is compared.The resultsshow that the cellular structure exhibits negative stiffness and periodic load-bearing capacity,as well as foldingangle has the most significant effect on the load-bearing and energy-absorbing capacity.By adjusting the designparameters,the stiffness,load-bearing capacity and energy absorption capacity of this cellular structure can beadjusted,which shows the programmable mechanical properties of this cellular structure.The foldability andthe smooth periodic load-bearing capacity give the structure potential for application as an energy-absorbing structure.展开更多
A gradient metamaterial with varying-stiffness local resonators is proposed to open the multiple bandgaps and further form a broad fusion bandgap.First,three local resonators with linearly increasing stiffness are per...A gradient metamaterial with varying-stiffness local resonators is proposed to open the multiple bandgaps and further form a broad fusion bandgap.First,three local resonators with linearly increasing stiffness are periodically attached to the spring-mass chain to construct the gradient metamaterial.The dispersion relation is then derived based on Bloch's theorem to reveal the fusion bandgap theoretically.The dynamic characteristic of the finite spring-mass chain is investigated to validate the fusion of multiple bandgaps.Finally,the effects of the design parameters on multiple bandgaps are discussed.The results show that the metamaterial with a non-uniform stiffness gradient pattern is capable of opening a broad fusion bandgap and effectively attenuating the longitudinal waves within a broad frequency region.展开更多
Projection micro stereolithography(PμSL)has emerged as a powerful three-dimensional(3D)printing technique for manufacturing polymer structures with micron-scale high resolution at high printing speed,which enables th...Projection micro stereolithography(PμSL)has emerged as a powerful three-dimensional(3D)printing technique for manufacturing polymer structures with micron-scale high resolution at high printing speed,which enables the production of customized 3D microlattices with feature sizes down to several microns.However,the mechanical properties of as-printed polymers were not systemically studied at the relevant length scales,especially when the feature sizes step into micron/sub-micron level,limiting its reliable performance prediction in micro/nanolattice and other metamaterial applications.In this work,we demonstrate that PμSL-printed microfibers could become stronger and significantly more ductile with reduced size ranging from 20μm to 60μm,showing an obvious size-dependent mechanical behavior,in which the size decreases to 20μm with a fracture strain up to~100%and fracture strength up to~100 MPa.Such size effect enables the tailoring of the material strength and stiffness of PμSL-printed microlattices over a broad range,allowing to fabricate the microlattice metamaterials with desired/tunable mechanical properties for various structural and functional applications.展开更多
The effect of a sandwiched cross-shaped metamaterial absorber(CMMA) on microwave absorption properties of the double-layered polyurethane foam absorber(PUFA) is investigated. Combining with the sandwiched CMMA, the ba...The effect of a sandwiched cross-shaped metamaterial absorber(CMMA) on microwave absorption properties of the double-layered polyurethane foam absorber(PUFA) is investigated. Combining with the sandwiched CMMA, the bandwidth of -10-dB reflection loss for PUFA is broadened from 7.4 GHz to 9.1 GHz, which is attributed to the overlap of two absorption peaks originating from CMMA and PUFA, respectively. The values of the two absorption peaks located at 10.15 GHz and 14.7 GHz are -38.44 dB and -40.91 dB, respectively. Additionally, distribution of surface current,electromagnetic field and power loss density are introduced to investigate the absorption mechanism of the CMMA. The electromagnetic field distribution of the double-layered PUFA and the three-layered hybrid absorber are comparatively analyzed to ascertain the influence of CMMA. The results show that the proposed hybrid absorber can be applied to the anti-electromagnetic interference and stealth technology.展开更多
A hybrid metamaterial with the integration of molybdenum disulfide(MoS_(2))overlayer is proposed to manipulate the terahertz(THz)wave.The simulated results indicate that the introduction of MoS_(2) layer could signifi...A hybrid metamaterial with the integration of molybdenum disulfide(MoS_(2))overlayer is proposed to manipulate the terahertz(THz)wave.The simulated results indicate that the introduction of MoS_(2) layer could significantly modify the resonant responses with large resonance red-shift and bandwidth broadening due to the depolarization field effect,especially for the structure on the small permitivity substrate.Additionally,the wide-band modulator in off-resonant region and a switch effect at resonance can be achieved by varying the conductivity of MoS_(2) layer.Further theoretical calculations based on the Lorentz coupling model are consistent with the simulated results,explicating the response behaviors originate from the coupling between MoS_(2) overlayer and the metastructure.Our results could provide a possibility for active control THz modulator and switchable device based on the MoS_(2) overlayer and advance the understanding of the coupling mechanism in hybrid structures.展开更多
Aiming at achieving tunable reentrant structures with rigidity and uniformity,respectively,the C-shaped and S-shaped reentrant metamaterials were proposed by the bionic design of animal structures.Utilizing beam theor...Aiming at achieving tunable reentrant structures with rigidity and uniformity,respectively,the C-shaped and S-shaped reentrant metamaterials were proposed by the bionic design of animal structures.Utilizing beam theory and energy methodology,the analytical expressions of the equivalent elastic modulus of the metamaterials were derived.Differences in deformation modes,mechanical properties,and energy absorption capacities were characterized by using experiments and the finite element analysis method.The effects of ligament angle and thickness on the mechanical characteristics of two novel metamaterials were investigated by using a parametric analysis.The results show that the stiffness,deformation mode,stress-strain curve,and energy absorption effects of three metamaterials are significantly different.This design philosophy can be extended from 2D to 3D and is applicable at multiple dimensions.展开更多
Compared with the inherent brittleness of bulk silicon(Si)at ambient temperature,the nanosized Si materials with very high strength,plasticity,and anelasticity due to size effect,are all well-documented.However,the ul...Compared with the inherent brittleness of bulk silicon(Si)at ambient temperature,the nanosized Si materials with very high strength,plasticity,and anelasticity due to size effect,are all well-documented.However,the ultimate stretchability of Si nanostructure has not yet been demonstrated due to the difficulties in experimental design.Herein,directly performing in-situ tensile tests in a scanning electron microscope after developing a protocol for sample transfer,shaping and straining,we report the customized nanosized Si mechanical metamaterial which overcomes brittle limitations and achieves an ultra-large tensile strain of up to 95%using the maskless focused ion beam(FIB)technology.The unprecedented characteristic is achieved synergistically through FIB-induced size-softening effect and engineering modification of mechanical metamaterials,revealed through analyses of finite element analysis,atomic-scale transmission electron microscope characterization and molecular dynamics simulations.This work is not only instructive for tailoring the strength and deformation behavior of nanosized Si mechanical metamaterials or other bulk materials,but also of practical relevance to the application of Si nanomaterials in nanoelectromechanical system and nanoscale strain engineering.展开更多
Natural mechanical materials,such as bamboo and bone,often exhibit superior specific mechanical properties due to their hierarchical porous architectures.Using the principle of hierarchy as inspiration can facilitate ...Natural mechanical materials,such as bamboo and bone,often exhibit superior specific mechanical properties due to their hierarchical porous architectures.Using the principle of hierarchy as inspiration can facilitate the development of hierarchical mechanical metamaterials(HMMs)across multiple length scales via 3D printing.In this work,we propose self-similar HMMs that combine octet-truss(OCT)architecture as the first and second orders,with cubic architecture as the third or more orders.These HMMs were fabricated using stereolithography 3D printing,with the length sizes ranging from approximately 200µm to the centimeter scale.The compressive stress–strain behaviors of HMMs exhibit a zigzag characteristic,and the toughness and energy absorption can be significantly enhanced by the hierarchical architecture.The compressive moduli are comparable to that of natural materials,and the strengths are superior to that of most polymer/metal foams,alumina hollow/carbon lattices,and other natural materials.Furthermore,the flexural stress–strain curves exhibit a nonlinear behavior,which can be attributed to the hierarchical architecture and local damage propagation.The relatively high mechanical properties can be attributed to the synergistic effect of the stretch-dominated OCT architecture and the bending-dominated cube architecture.Lastly,an ultralight HMM-integrated unmanned aerial vehicle(HMM-UAV)was successfully designed and printed.The HMM-UAV is~85%lighter than its bulk counterpart,remarkably extending the flight duration time(~53%).This work not only provides an effective design strategy for HMMs but also further expands the application benchmark of HMMs.展开更多
基金supported by the National Natural Science Foundation of China(No.11722217)the Tsinghua University,China Initiative Scientific Research Program(No.2019Z08QCX10)the Institute for Guo Qiang,Tsinghua University,China(No.2019GQG1012)。
文摘Over the past decade,multistable mechanical metamaterials have been widely investigated because of their novel shape reconfigurability and programmable energy landscape.The ability to reversibly reshape among diverse stable states with different energy levels represents the most important feature of the multistable mechanical metamaterials.We summarize main design strategies of multistable mechanical metamaterials,including those based on self-assembly scheme,snap-through instability,structured mechanism and geometrical frustration,with a focus on the number and controllability of accessible stable states.Then we concentrate on unusual mechanical properties of these multistable mechanical metamaterials,and present their applications in a wide range of areas,including tunable electromagnetic devices,actuators,robotics,and mechanical logic gates.Finally,we discuss remaining challenges and open opportunities of designs and applications of multistable mechanical metamaterials.
基金support from the National Natural Science Foundation of China(Grant No.12102193)Shenzhen-Hong KongMacao Science and Technology Program(Category C)(SGDX2020110309300301)+1 种基金Key R&D Program from the Science and Technology Department of Sichuan Province(Key Science&Technology Project)(No.2022YFSY0001)Changsha Municipal Science and Technology Bureau under the Grant kh2201035.
文摘Auxetic mechanical metamaterials are artificially architected materials that possess negative Poisson’s ratio,demonstrating transversal contracting deformation under external vertical compression loading.Their physical properties are mainly determined by spatial topological configurations.Traditionally,classical auxetic mechanical metamaterials exhibit relatively lower mechanical stiffness,compared to classic stretching dominated architectures.Nevertheless,in recent years,several novel auxetic mechanical metamaterials with high stiffness have been designed and proposed for energy absorption,load-bearing,and thermal-mechanical coupling applications.In this paper,mechanical design methods for designing auxetic structures with soft and stiff mechanical behavior are summarized and classified.For soft auxetic mechanical metamaterials,classic methods,such as using soft basic material,hierarchical design,tensile braided design,and curved ribs,are proposed.In comparison,for stiff auxetic mechanical metamaterials,design schemes,such as hard base material,hierarchical design,composite design,and adding additional load-bearing ribs,are proposed.Multi-functional applications of soft and stiff auxetic mechanical metamaterials are then reviewed.We hope this study could provide some guidelines for designing programmed auxetics with specified mechanical stiffness and deformation abilities according to demand.
基金supported by the National Natural Science Foundation of China(Grant Nos.12172164,52250363)the National Key R&D Program of China(Grant Nos.2021YFB3801800,2018YFA0306200)。
文摘Multistable mechanical metamaterials are a type of mechanical metamaterials with special features,such as reusability,energy storage and absorption capabilities,rapid deformation,and amplified output forces.These metamaterials are usually realized by series and/or parallel of bistable units.They can exhibit multiple stable configurations under external loads and can be switched reversely among each other,thereby realizing the reusability of mechanical metamaterials and offering broad engineering applications.This paper reviews the latest research progress in the design strategy,manufacture and application of multistable mechanical metamaterials.We divide bistable structures into three categories based on their basic element types and provide the criterion of their bistability.Various manufacturing techniques to fabricate these multistable mechanical metamaterials are introduced,including mold casting,cutting,folding and three-dimensional/4D printing.Furthermore,the prospects of multistable mechanical metamaterials for applications in soft driving,mechanical computing,energy absorption and wave controlling are discussed.Finally,this paper highlights possible challenges and opportunities for future investigations.The review aims to provide insights into the research and development of multistable mechanical metamaterials.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(2021B0301030001)project supported by the Space Utilization System of China Manned Space Engineering(KJZ-YY-WCL03)+6 种基金National Key Laboratory Foundation of Science and Technology on Materials under Shock and Impact(6142902210109)National Key Research and Development Program of China(2018YFB0905600 and 2017YFB0310400)National Natural Science Foundation of China(51472188 and 51521001)Natural Research Funds of Hubei Province(2016CFB583)Natural Research Funds of Shenzhen,Fundamental Research Funds for the Central Universities China,State Key Laboratory of Advanced Electromagnetic Engineering and Technology(Huazhong University of Science and Technology)the Science and Technology Project of the Global Energy Interconnection Research Institute Co.,Ltd.(SGGR0000WLJS1801080)the 111 Project(B13035)。
文摘Mechanical metamaterials can be defined as a class of architected materials that exhibit unprecedented mechanical properties derived from designed artificial architectures rather than their constituent materials.While macroscale and simple layouts can be realized by conventional top-down manufacturing approaches,many of the sophisticated designs at various length scales remain elusive,due to the lack of adequate manufacturing methods.Recent progress in additive manufacturing(AM)has led to the realization of a myriad of novel metamaterial concepts.AM methods capable of fabricating microscale architectures with high resolution,arbitrary complexity,and high feature fidelity have enabled the rapid development of architected meta materials and drastically reduced the design-computation and experimental-validation cycle.This paper first provides a detailed review of various topologies based on the desired mechanical properties,including stiff,strong,and auxetic(negative Poisson’s ratio)metamaterials,followed by a discussion of the AM technologies capable of fabricating these metamaterials.Finally,we discuss current challenges and recommend future directions for AM and mechanical metamaterials.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61265005 and 11574059)the Natural Science Foundation of Guangxi,China(Grant Nos.2015GXNSFDA19039 and 2014GXNSFAA118376)+1 种基金the Foundation from Guangxi Key Laboratory of Automatic Detection Technology and Instrument,China(Grant Nos.YQ14114 and YQ15106)the Innovation Project of Guangxi Graduate Education,China(Grant Nos.2016YJCX03 and2016YJCX31)
文摘We experimentally demonstrate a mechanically tunable metamaterials terahertz(THz) dual-band bandstop filter. The unit cell of the filter contains an inner aluminum circle and an outside aluminum Ohm-ring on high resistance silicon substrate. The performance of the filter is simulated by finite-integration-time-domain(FITD) method. The sample is fabricated using a surface micromachining process and experimentally demonstrated using a THz time-domain-spectroscopy(TDS) system. The results show that, when the incident THz wave is polarized in y-axis, the filter has two intensive absorption peaks locating at 0.71 THz and 1.13 THz, respectively. The position of the high-frequency absorption peak and the amplitude of the low-frequency absorption peak can be simultaneously tuned by rotating the sample along its normal axis.The tunability of the high-frequency absorption peak is due to the shift of resonance frequency of two electrical dipoles,and that of the low-frequency absorption peak results from the effect of rotationally induced transparent. This tunable filter is very useful for switch, manipulation, and frequency selective detection of THz beam.
基金supported by the National Natural Science Foundation of China(Grant Nos.52075411 and U1913213)Shaanxi Key Research and Development Program(Grant No.2020ZDLGY06-11).
文摘In recent years,materials with asymmetric mechanical response properties(mechanical Janus materials)have been found possess numerous potential applications,i.e.shock absorption and vibration isolation.In this study,we propose a novel mechanical Janus lattice whose asymmetric mechanical response can be switched in orientation by a plug.Through finite element analysis and experimental verification,this lattice exhibits asymmetric displacement responses to symmetric forces.Furthermore,with such a plug structure inside,individual lattices can switch the orientation of asymmetry and thus achieve reprogrammable design of a mechanical structure with chained lattices.The reprogrammable asymmetry of this material will offer multiple functions in design of mechanical metamaterials.
基金partially supported by the National Key R&D Program of China(Grant No.2022YFB2602700)the National Natural Science Foundation of China(Grant No.52378216)+1 种基金the National Natural Science Foundation of China for Excellent Young Scientists Fundthe Fundamental Research Funds for the Central Universities(Grant No.2022CDJKYJH052).
文摘Cellular structures are commonly used to design energy-absorbing structures,and origami structures are becominga prevalent method of cellular structure design.This paper proposes a foldable cellular structure based on theWaterbomb origami pattern.The geometrical configuration of this structure is described.Quasi-static compressiontests of the origami tube cell of this cellular structure are conducted,and load-displacement relationship curvesare obtained.Numerical simulations are carried out to analyze the effects of aspect ratio,folding angle,thicknessand number of layers of origami tubes on initial peak force and specific energy absorption(SEA).Calculationformulas for initial peak force and SEA are obtained by the multiple linear regression method.The degree ofinfluence of each parameter on the mechanical properties of the single-layer tube cell is compared.The resultsshow that the cellular structure exhibits negative stiffness and periodic load-bearing capacity,as well as foldingangle has the most significant effect on the load-bearing and energy-absorbing capacity.By adjusting the designparameters,the stiffness,load-bearing capacity and energy absorption capacity of this cellular structure can beadjusted,which shows the programmable mechanical properties of this cellular structure.The foldability andthe smooth periodic load-bearing capacity give the structure potential for application as an energy-absorbing structure.
基金supported by the National Natural Science Foundation of China(Nos.12122206,52175125,12272129,12304309,and 12302039)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24A020006)+1 种基金the Hong Kong Scholars Program of China(No.XJ2022012)the Natural Science Foundation of Hunan Province of China(No.2024JJ4004)。
文摘A gradient metamaterial with varying-stiffness local resonators is proposed to open the multiple bandgaps and further form a broad fusion bandgap.First,three local resonators with linearly increasing stiffness are periodically attached to the spring-mass chain to construct the gradient metamaterial.The dispersion relation is then derived based on Bloch's theorem to reveal the fusion bandgap theoretically.The dynamic characteristic of the finite spring-mass chain is investigated to validate the fusion of multiple bandgaps.Finally,the effects of the design parameters on multiple bandgaps are discussed.The results show that the metamaterial with a non-uniform stiffness gradient pattern is capable of opening a broad fusion bandgap and effectively attenuating the longitudinal waves within a broad frequency region.
基金the financial support from Shenzhen Science and Technology Innovation Committee under the Grant Nos. JCYJ20170818103206501, Type C 202011033000145Changsha Municipal Science and Technology Bureau Project kh2201035supported by the City University of Hong Kong under the Grant No. 9667226
文摘Projection micro stereolithography(PμSL)has emerged as a powerful three-dimensional(3D)printing technique for manufacturing polymer structures with micron-scale high resolution at high printing speed,which enables the production of customized 3D microlattices with feature sizes down to several microns.However,the mechanical properties of as-printed polymers were not systemically studied at the relevant length scales,especially when the feature sizes step into micron/sub-micron level,limiting its reliable performance prediction in micro/nanolattice and other metamaterial applications.In this work,we demonstrate that PμSL-printed microfibers could become stronger and significantly more ductile with reduced size ranging from 20μm to 60μm,showing an obvious size-dependent mechanical behavior,in which the size decreases to 20μm with a fracture strain up to~100%and fracture strength up to~100 MPa.Such size effect enables the tailoring of the material strength and stiffness of PμSL-printed microlattices over a broad range,allowing to fabricate the microlattice metamaterials with desired/tunable mechanical properties for various structural and functional applications.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0204600)the National Natural Science Foundation of China(Grant No.51802352)the Fundamental Research Funds for the Central Universities of Central South University,China(Grant No.2018zzts355)
文摘The effect of a sandwiched cross-shaped metamaterial absorber(CMMA) on microwave absorption properties of the double-layered polyurethane foam absorber(PUFA) is investigated. Combining with the sandwiched CMMA, the bandwidth of -10-dB reflection loss for PUFA is broadened from 7.4 GHz to 9.1 GHz, which is attributed to the overlap of two absorption peaks originating from CMMA and PUFA, respectively. The values of the two absorption peaks located at 10.15 GHz and 14.7 GHz are -38.44 dB and -40.91 dB, respectively. Additionally, distribution of surface current,electromagnetic field and power loss density are introduced to investigate the absorption mechanism of the CMMA. The electromagnetic field distribution of the double-layered PUFA and the three-layered hybrid absorber are comparatively analyzed to ascertain the influence of CMMA. The results show that the proposed hybrid absorber can be applied to the anti-electromagnetic interference and stealth technology.
基金Beijing Natural Science Foundation of China(Grant No.4181001)the National Natural Science Foundation of China(Grant Nos.62075142 and 61875140).
文摘A hybrid metamaterial with the integration of molybdenum disulfide(MoS_(2))overlayer is proposed to manipulate the terahertz(THz)wave.The simulated results indicate that the introduction of MoS_(2) layer could significantly modify the resonant responses with large resonance red-shift and bandwidth broadening due to the depolarization field effect,especially for the structure on the small permitivity substrate.Additionally,the wide-band modulator in off-resonant region and a switch effect at resonance can be achieved by varying the conductivity of MoS_(2) layer.Further theoretical calculations based on the Lorentz coupling model are consistent with the simulated results,explicating the response behaviors originate from the coupling between MoS_(2) overlayer and the metastructure.Our results could provide a possibility for active control THz modulator and switchable device based on the MoS_(2) overlayer and advance the understanding of the coupling mechanism in hybrid structures.
基金supported by the Natural Science Foundation of Hebei Province of China(Grant No.A2020502005)the Independent Research and Development Project of China Aerospace Science and Technology Corporation(Grant No.0337000000003)the National Natural Science Foundation of China(Grant No.12272045).
文摘Aiming at achieving tunable reentrant structures with rigidity and uniformity,respectively,the C-shaped and S-shaped reentrant metamaterials were proposed by the bionic design of animal structures.Utilizing beam theory and energy methodology,the analytical expressions of the equivalent elastic modulus of the metamaterials were derived.Differences in deformation modes,mechanical properties,and energy absorption capacities were characterized by using experiments and the finite element analysis method.The effects of ligament angle and thickness on the mechanical characteristics of two novel metamaterials were investigated by using a parametric analysis.The results show that the stiffness,deformation mode,stress-strain curve,and energy absorption effects of three metamaterials are significantly different.This design philosophy can be extended from 2D to 3D and is applicable at multiple dimensions.
基金supported by the National Natural Science Foundation of China (62274031, 12174050, and 12234005)Jiangsu Provincial Natural Science Foundation of China (BK20231411)+1 种基金the Key Research and Development Program of Jiangsu Province (BE2021007-2)the New Cornerstone Science Foundation and XPLORER PRIZE。
文摘Compared with the inherent brittleness of bulk silicon(Si)at ambient temperature,the nanosized Si materials with very high strength,plasticity,and anelasticity due to size effect,are all well-documented.However,the ultimate stretchability of Si nanostructure has not yet been demonstrated due to the difficulties in experimental design.Herein,directly performing in-situ tensile tests in a scanning electron microscope after developing a protocol for sample transfer,shaping and straining,we report the customized nanosized Si mechanical metamaterial which overcomes brittle limitations and achieves an ultra-large tensile strain of up to 95%using the maskless focused ion beam(FIB)technology.The unprecedented characteristic is achieved synergistically through FIB-induced size-softening effect and engineering modification of mechanical metamaterials,revealed through analyses of finite element analysis,atomic-scale transmission electron microscope characterization and molecular dynamics simulations.This work is not only instructive for tailoring the strength and deformation behavior of nanosized Si mechanical metamaterials or other bulk materials,but also of practical relevance to the application of Si nanomaterials in nanoelectromechanical system and nanoscale strain engineering.
基金financial support of the National Natural Science Foundation of China(Grant No.51905350).
文摘Natural mechanical materials,such as bamboo and bone,often exhibit superior specific mechanical properties due to their hierarchical porous architectures.Using the principle of hierarchy as inspiration can facilitate the development of hierarchical mechanical metamaterials(HMMs)across multiple length scales via 3D printing.In this work,we propose self-similar HMMs that combine octet-truss(OCT)architecture as the first and second orders,with cubic architecture as the third or more orders.These HMMs were fabricated using stereolithography 3D printing,with the length sizes ranging from approximately 200µm to the centimeter scale.The compressive stress–strain behaviors of HMMs exhibit a zigzag characteristic,and the toughness and energy absorption can be significantly enhanced by the hierarchical architecture.The compressive moduli are comparable to that of natural materials,and the strengths are superior to that of most polymer/metal foams,alumina hollow/carbon lattices,and other natural materials.Furthermore,the flexural stress–strain curves exhibit a nonlinear behavior,which can be attributed to the hierarchical architecture and local damage propagation.The relatively high mechanical properties can be attributed to the synergistic effect of the stretch-dominated OCT architecture and the bending-dominated cube architecture.Lastly,an ultralight HMM-integrated unmanned aerial vehicle(HMM-UAV)was successfully designed and printed.The HMM-UAV is~85%lighter than its bulk counterpart,remarkably extending the flight duration time(~53%).This work not only provides an effective design strategy for HMMs but also further expands the application benchmark of HMMs.