期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effects of low melting point metals(Ga,In,Sn) on hydrolysis properties of aluminum alloys 被引量:3
1
作者 王凡强 王辉虎 +5 位作者 王建 芦佳 罗平 常鹰 马新国 董仕节 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第1期152-159,共8页
Low melting point metals(Ga, In, Sn) as alloy elements were used to prepare Al-In-Sn and Al-Ga-In-Sn alloys through mechanical ball milling method. The effects of mass ratio of In to Sn and Ga content on the hydroly... Low melting point metals(Ga, In, Sn) as alloy elements were used to prepare Al-In-Sn and Al-Ga-In-Sn alloys through mechanical ball milling method. The effects of mass ratio of In to Sn and Ga content on the hydrolysis properties of aluminum alloys were investigated. X-ray diffraction(XRD) and scanning electron microscopy(SEM) with energy disperse spectroscopy(EDS) were used to analyze the compositions and morphologies of the obtained Al alloys. The results show that the phase compositions of Al-In-Sn ternary alloys are Al and two intermetallic compounds, In3 Sn and In Sn4. All Al-In-Sn ternary alloys exhibit poor hydrolysis activity at room temperature. Al-In-Sn alloy with the mass ratio of In to Sn equaling 1:4 has the highest hydrogen yield. After Ga is introduced to the ternary alloys, the hydrolysis activity of aluminum alloys at room temperature is greatly improved. It is speculated that the addition of Ga element promotes the formation of defects inside the Al alloys and Ga-In3Sn-In Sn4 eutectic alloys on the alloys surface. Al atoms can be dissolved in this eutectic phase and become the active spots during the hydrolysis process. The small size and uniform distribution of this eutectic phase may be responsible for the enhancement of hydrolysis activity. 展开更多
关键词 aluminum alloy low melting point metal HYDROLYSIS hydrogen generation mechanical ball milling method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部