期刊文献+
共找到69篇文章
< 1 2 4 >
每页显示 20 50 100
MECHANICAL PROPERTIES OF LONGITUDINAL SUBMERGED ARC WELDED STEEL PIPES USED FOR GAS PIPELINE OF OFFSHORE OIL 被引量:10
1
作者 Z.Z. Yang W. Tian +5 位作者 Q.R. Ma Y.L. Li J.K. Li J.Z. Gao H.B. Zhang Y.H. Yang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2008年第2期85-93,共9页
Since the development of offshore oil and gas, increased submarine oil and gas pipelines were installed. All the early steel pipes of submarine pipelines depended on importing because of the strict requirements of com... Since the development of offshore oil and gas, increased submarine oil and gas pipelines were installed. All the early steel pipes of submarine pipelines depended on importing because of the strict requirements of comprehensive properties, such as, anti-corrosion, resistance to pressure and so on. To research and develop domes- tic steel pipes used for the submarine pipeline, the Longitudinal-seam Submerged Arc Welded (LSAW) pipes were made of steel plates cut from leveled hot rolled coils by both the JCOE and UOE (the forming process in which the plate like the letter “J”, “C”, “0” or “U” shape, then expansion) forming processes. Furthermore, the mechanical properties of the pipe base metal and weld metal were tested, and the results were in accordance with the corresponding pipe specification API SPEC 5L or DNV- OS-FI01, which showed that domestic LSAW pipes could be used for submarine oil and gas pipelines. 展开更多
关键词 mechanical properties Offshore oil and gas Longitudinal-seamsubmerged arc welded pipe (LSA W) Pipeline JCOE formingprocess UOE forming process
下载PDF
Microstructure and mechanical properties of friction pull plug welding for2219-T87 aluminum alloy with tungsten inert gas weld 被引量:5
2
作者 Zhen Shao Lei Cui +4 位作者 Lijun Yang Peng Lu Huimiao Wang Zhuanping Sun Jianling Song 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第6期1216-1224,共9页
The friction pull plug welding(FPPW)of the 2219-T87 tungsten inert gas(TIG)welded joint was investigated,and the microstructures,precipitate evolution,mechanical properties,and fracture morphologies of this joint were... The friction pull plug welding(FPPW)of the 2219-T87 tungsten inert gas(TIG)welded joint was investigated,and the microstructures,precipitate evolution,mechanical properties,and fracture morphologies of this joint were analyzed and discussed.In this study,defectfree joints were obtained using a rotational speed of 7000 r/min,an axial feeding displacement of 12 mm,and an axial force of 20-22 kN.The results indicated that within these welding parameters,metallurgical bonding between the plug and plate is achieved by the formation of recrystallized grains.The microstructural features of the FPPW joint can be divided into different regions,including the heat-affected zone(HAZ),thermomechanically affected zone(TMAZ),recrystallization zone(RZ),heat-affected zone in the TIG weld(TIG-HAZ),and the thermomechanically affected zone in the TIG weld(TIG-TMAZ).In the TIG-TMAZ,the grains were highly deformed and elongated due to the shear and the extrusion that produces the plug during the FPPW process.The main reason for the softening in the TMAZ is determined to be the dissolution ofθ’and coarsening ofθprecipitate particles.In a tensile test,the FPPW joint welded with an axial force of 22 kN showed the highest ultimate tensile strength of 237 MPa.The locations of cracks and factures in the TIG-TMAZ were identified.The fracture morphology of the tensile sample showed good plasticity and toughness of the joints. 展开更多
关键词 friction pull plug welding tungsten inert gas weld microstructures constituent particles mechanical properties
下载PDF
Influence of Sn addition on mechanical properties of gas tungsten arc welded AM60 Mg alloy sheets 被引量:2
3
作者 Jun GOU Ai-tao TANG +4 位作者 Fu-sheng PAN Jia SHE Su-qin LUO Jun-hua YE Da-wei SHI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第8期2051-2057,共7页
The effects of Sn addition on the microstructure and mechanical properties of gas tungsten arc butt-welded Mg?6Al?0.3Mn (AM60) (mass fraction, %) alloy sheets were investigated by optical microscopy, scanning electron... The effects of Sn addition on the microstructure and mechanical properties of gas tungsten arc butt-welded Mg?6Al?0.3Mn (AM60) (mass fraction, %) alloy sheets were investigated by optical microscopy, scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and microhardness and tensile tests. The results indicate that both the average microhardness and joint efficiency of AM60 are improved by the addition of 1% Sn (mass fraction). The ultimate tensile strength of Mg?6Al?1Sn?0.3Mn (ATM610) reaches up to 96.8% of that of base material. Moreover, fracture occurs in the fusion zone ofATM610 instead of in the heat-affected zone of AM60 welded joint. The improvement in the properties is mainly attributed to the formation of Mg2Sn, which effectively obstructs the grain coarsening in the heat-affected zone, resulting in a relatively finemicrostructure. The addition of 1% Sn improves the mechanical properties of AM60 welded joint 展开更多
关键词 AM60 Mg alloy ATM610 Mg alloy gas tungsten arc welding mechanical properties
下载PDF
Effect of combinative addition of Ti and Sr on modification of AA4043 welding wire and mechanical properties of AA6082 welded by TIG welding 被引量:2
4
作者 王博 薛松柏 +2 位作者 马超力 韩翼龙 林中强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第2期272-281,共10页
To improve the mechanical properties of AA6082 weld welded by tungsten inert gas welding using AA4043 welding wire, the effect of addition of Ti and/or Sr on continuous cast and rolled AA4043 welding wire was investig... To improve the mechanical properties of AA6082 weld welded by tungsten inert gas welding using AA4043 welding wire, the effect of addition of Ti and/or Sr on continuous cast and rolled AA4043 welding wire was investigated. Experimental results indicated that Ti and Sr are excellent modifiers, which improve the microstructure of the AA4043 welding wire and enhance the mechanical properties of the AA6082 weld. It was found that the combinative addition of Ti and Sr can effectively modify both the α(Al) dendrites and eutectic Si phases compared with individual addition of Ti or Sr. In addition, Ti and/or Sr also changed the microstructure of the AA6082 weld. The tensile strength of the AA6082 weld reached the maximum value when 0.08% Ti and 0.025% Sr were added simultaneously. These results indicate that the combinative addition of Ti and Sr can be an effective composite modifier. 展开更多
关键词 AA4043 welding wire TITANIUM STRONTIUM MODIFICATION gas tungsten arc welding microstructure mechanical properties
下载PDF
Effects of aging treatment and heat input on the microstructures and mechanical properties of TIG-welded 6061-T6 alloy joints 被引量:10
5
作者 Dong Peng Jun Shen +2 位作者 Qin Tang Cui-ping Wu Yan-bing Zhou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第3期259-265,共7页
Aging treatment and various heat input conditions and mechanical properties of TIG welded 606I-T6 alloy joints were adopted to investigate the microstructural evolution by microstructural observations, microhardness t... Aging treatment and various heat input conditions and mechanical properties of TIG welded 606I-T6 alloy joints were adopted to investigate the microstructural evolution by microstructural observations, microhardness tests, and tensile tests. With an increase in heat input, the width of the heat-affected zone (HAZ) increases and grains in the fusion zone (FZ) coarsen. Moreover, the hardness of the HAZ decreases, whereas that of the FZ decreases initially and then increases with an increase in heat input. Low heat input results in the low ultimate tensile strength of the welded joints due to the presence of partial penetrations and pores in the welded joints. After a simple artificial aging treatment at 175℃ for 8 h, the microstructure of the welded joints changes slightly. The mechanical properties of the welded joints enhance significantly after the aging process as few precipitates distribute in the welded seam. 展开更多
关键词 aluminum alloys tungsten inert gas welding heat input aging mechanical properties microstructure
下载PDF
Mechanical Properties and Weld Properties of Beta-21S 被引量:4
6
作者 彭益群 《Rare Metals》 SCIE EI CAS CSCD 1996年第2期95-100,共6页
The tests of mechanical properties and weld properties and observations of microstructure were carriedout. The results show that the alloy has good strength properties at room and elevated ternperatures. It has excell... The tests of mechanical properties and weld properties and observations of microstructure were carriedout. The results show that the alloy has good strength properties at room and elevated ternperatures. It has excellent cold formability and goodweldability. The alloy will be very usable. 展开更多
关键词 mechanical properties argon gas tungsten-arc weld
下载PDF
Microstructure and mechanical properties of the welding joint filled with microalloying 5183 aluminum welding wires 被引量:1
7
作者 Zhen Xu Zhi-hao Zhao +2 位作者 Gao-song Wang Chao Zhang Jian-zhong Cui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第6期577-582,共6页
In this study, 7A52 aluminum alloy sheets of 4 mm in thickness were welded by tungsten inert gas welding using microalloying welding wires containing traces of Zr and Er. The influence of rare earth elements Zr and Er... In this study, 7A52 aluminum alloy sheets of 4 mm in thickness were welded by tungsten inert gas welding using microalloying welding wires containing traces of Zr and Er. The influence of rare earth elements Zr and Er on the microstructure and mechanical properties of the welded joints was analyzed by optical microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, hardness testing, and tensile mechanical properties testing. Systematic analyses indicate that the addition of trace amounts of Er and Zr leads to the formation of fine Al3Er, Al3Zr, and Al3(Zr,Er) phases that favor significant grain refinement in the weld zone. Besides, the tensile strength and hardness of the welded joints were obviously improved with the addition of Er and Zr, as evidenced by the increase in tensile strength and elongation by 40 MPa and 1.4%, respectively, and by the welding coefficient of 73%. 展开更多
关键词 aluminum alloys inert gas welding rare earth elements MICROALLOYING JOINTS microstructure mechanical properties
下载PDF
Microstructural evolution and its effect on mechanical properties in different regions of 2219-C10S aluminum alloy TIG-welded joint 被引量:1
8
作者 Deng-kui ZHANG Ai-ping WU +6 位作者 Yue ZHAO Ji-guo SHAN Zhan-dong WAN Guo-qing WANG Jian-ling SONG Zhong-ping ZHANG Xian-li LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第10期2625-2638,共14页
Microstructural evolution and its effect on mechanical properties in different regions of 2219-C10S aluminum alloy tungsten inert gas(TIG)welded joint were analyzed in detail.In weld zone(WZ),α+θeutectic structure f... Microstructural evolution and its effect on mechanical properties in different regions of 2219-C10S aluminum alloy tungsten inert gas(TIG)welded joint were analyzed in detail.In weld zone(WZ),α+θeutectic structure formed at grain boundaries with no precipitates inside the grains.In partially melted zone(PMZ),symbiotic eutectic or divorced eutectic formed at grain boundaries and needle-likeθ′phases appeared in the secondary heated zone.In over aged zone(OAZ),the coarsening and dissolution ofθ′phases occurred and mostθ′phases transformed intoθphases.In general heat affected zone(HAZ),θ′phases coarsened.Factors such as the strengthening phases,the grain size,the Cu content in matrix and the dislocation density can affect the mechanical properties in different regions of the joint.Moreover,a model describing the relationship between mechanical properties of the material and the volume fraction of precipitates,the average diameter of precipitates and the concentration of soluble elements was proposed. 展开更多
关键词 2219-C10S aluminum alloy tungsten inert gas arc welding microstructural evolution mechanical properties relationship model
下载PDF
Effects of graphene nanoplates on microstructures and mechanical properties of NSA-TIG welded AZ31 magnesium alloy joints
9
作者 Tao ZHANG Jun SHEN +3 位作者 Lu-qiang Lü Chun-min WANG Jia-xin SANG Dong WU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第6期1285-1293,共9页
The effects of graphene nanoplates(GNPs)on the microstructures and mechanical properties of nanoparticlesstrengthening activating tungsten inert gas arc welding(NSA-TIG)welded AZ31magnesium alloy joints were investiga... The effects of graphene nanoplates(GNPs)on the microstructures and mechanical properties of nanoparticlesstrengthening activating tungsten inert gas arc welding(NSA-TIG)welded AZ31magnesium alloy joints were investigated.It wasfound that compared with those of activating TIG(A-TIG),and obvious refinement ofα-Mg grains was achieved and the finestα-Mggrains of fusion zone of NSA-TIG joints were obtained in the welded joints with TiO2+GNPs flux coating.In addition,thepenetrations of joints coated by TiO2+GNPs flux were similar to those coated by the TiO2+SiCp flux.However,the welded jointswith TiO2+GNPs flux coating showed better mechanical properties(i.e.,ultimate tensile strength and microhardness)than those withTiO2+SiCp flux coating.Moreover,the generation of necking only occurred in the welded joints with TiO2+GNPs flux. 展开更多
关键词 graphene nanoplate nanoparticles strengthening activating gas tungsten inert arc welding AZ31 magnesium alloy microstructure mechanical properties
下载PDF
Interfacial Microstructure and Mechanical Properties of Al/Mg Butt Joints Made by MIG Welding Process with Zn-Cd Alloy as Interlayer 被引量:6
10
作者 张洪涛 DAI Xiangyu FENG Jicai 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第6期1258-1264,共7页
Butt joints between Mg alloy AZ31 B and pure Al 1 060 sheets were produced via metal inert gas welding process with Zn-Cd alloy foil. Crack-free Al/Mg butt joints between AZ31 B Mg alloy and pure Al 1060 sheets were o... Butt joints between Mg alloy AZ31 B and pure Al 1 060 sheets were produced via metal inert gas welding process with Zn-Cd alloy foil. Crack-free Al/Mg butt joints between AZ31 B Mg alloy and pure Al 1060 sheets were obtained. Intermetallic compound layer 1 and layer 2 had formed in fusion zone/Mg alloy and the average thickness of the layer 1 was about 50 μm. The intermetallic compound layer 1 consisted of Al12Mg17 and Mg2Si phases while layer 2 consisted of Al12Mg17, Mg2Si and Mg Zn2 phases. The crack started from the IMC layer at the bottom of the joint and propagated along the brittle IMC layer, then expanded into weld metal during the SEM in situ tensile test. The highest tensile strength of the dissimilar metal butt joints could reach 46.8 MPa and the effect ofinterfacial IMC layer on mechanical property of the joint was discussed in detail in the present study. 展开更多
关键词 metal inert gas welding aluminum magnesium microstructure mechanical property
下载PDF
Influence of shielding gas on the mechanical and metallurgical properties of DP-GMA-welded 5083-H321 aluminum alloy 被引量:1
11
作者 Amin Reza Koushki Massoud Goodarzi Moslem Paidar 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第12期1416-1426,共11页
In the present research, 6-mm-thick 5083-H321 aluminum alloy was joined by the double-pulsed gas metal arc welding (DP-GMAW) process. The objective was to investigate the influence of the shielding gas composition o... In the present research, 6-mm-thick 5083-H321 aluminum alloy was joined by the double-pulsed gas metal arc welding (DP-GMAW) process. The objective was to investigate the influence of the shielding gas composition on the microstructure and properties of GMA welds. A macrostructural study indicated that the addition of nitrogen and oxygen to the argon shielding gas resulted in better weld penetration. Furthermore, the tensile strength and bending strength of the welds were improved when oxygen and nitrogen (at concentrations as high as approximately 0. 1vol%) were added to the shielding gas; however, these properties were adversely affected when the oxygen and nitrogen contents were increased further. This behavior was attributed to the formation of excessive brown and black oxide films on the bead surface, the formation of intermetallic compounds in the weld metal, and the formation of thicker oxide layers on the bead surface with increasing nitrogen and oxygen contents in the argon-based shielding gas. Analysis by energy-dispersive X-ray spectroscopy revealed that most of these compounds are nitrides or oxides. 展开更多
关键词 aluminum alloys gas metal arc welding shielding gas mechanical properties metallurgical properties
下载PDF
A Study of Microstructure and Mechanical Properties for the Autogenous Single-Pass Butt Weldment of a Ferritic/Martensitic Steel Using Gas Tungsten Arc Welding
12
作者 Dong Wu Shitong Wei Shanping Lu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第5期628-638,共11页
A 12%Cr ferritic/martensitic steel,HT-9,has been used as a primary core material for nuclear reactors.The microstructure and mechanical properties of gas tungsten arc butt welded joints of HT-9 in as-welded,and as-tem... A 12%Cr ferritic/martensitic steel,HT-9,has been used as a primary core material for nuclear reactors.The microstructure and mechanical properties of gas tungsten arc butt welded joints of HT-9 in as-welded,and as-tempered conditions have been explored.In as-welded condition,the fusion zone(FZ)contained a fresh martensite matrix with delta(δ)-ferrite.Theδ-ferrite was rich in Cr and depleted in C compared with the matrix.The heat-aff ected zone(HAZ)could be divided into three areas as the distance from the fusion line increased:δ-ferrite/martensite duplex zone,fully recrystallized zone,and partly recrystallized zone.Prior austenitic grains did not coarsen in theδ-ferrite/martensite duplex zone due to the newly nucleatedδ-ferrite grains and incompletely ferritizing(δ-ferrite)during the welding thermal cycle.The weldment microhardness distributed heterogeneously with values above 600 HV_(1.0)in the HAZ and FZ and 250 HV_(1.0)in the base metal(BM).Solute C in the matrix,induced by the dissolution of carbide during the welding process,dominated the microhardness variation.Low toughness was observed in the FZ with a quasi-cleavage fracture tested from-80 to 20℃.The tensile fracture occurred in the relatively soft BM tested from 20 to 600℃.In as-tempered condition(760℃for 1 h),M_(23)C_6-type carbides precipitated within the martensitic laths,the lath boundaries,and theδ-ferrite/martensite interfaces.Moreover,V,Cr,Mo-rich nitrides with very small size also precipitated in theδ-ferrite/martensite interface.The tempering treatment improved the homogenous distribution of weldment hardness significantly.Tensile fracture still occurred in the BM of the weldment specimens tested from 20 to 600℃.The impact toughness improved significantly,but the ductile–brittle transaction temperature was-12℃which was higher than that of the normalized and tempered(N&T)BM.δ-ferrite was considered to be one of the major factors aggravating the impact toughness in the FZ. 展开更多
关键词 Martensitic stainless steel gas tungsten arc welding(GTAW) Post-weld heat treatment MICROSTRUCTURE mechanical properties
原文传递
Unveiling the Residual Stresses,Local Micromechanical Properties and Crystallographic Texture in a Ti-6Al-4V Weld Joint 被引量:3
13
作者 B.Mehdi R.Badji +5 位作者 V.Ji B.Alili D.Bradai W.Bedjaoui F.Deschaux-Beaume F.Brisset 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第7期997-1006,共10页
In this work,the micromechanical properties,crystallographic texture,welding residual stresses and their evolution after plastic strain were investigated in a Ti-6Al-4V alloy tungsten inert gas weld joint.It was found... In this work,the micromechanical properties,crystallographic texture,welding residual stresses and their evolution after plastic strain were investigated in a Ti-6Al-4V alloy tungsten inert gas weld joint.It was found that the welding process affected the Young modulus and microhardness values in bothαandβphases in the different regions of the weld joint.The highest microhardness and Young modulus values of a phase were recorded in the heat-affected zone,whereas the highest values of these characteristics for theβphase were found in the fusion zone(FZ).The change in the micro mechanical properties was accompanied by a change in the crystallographic texture components of the dominant a phase from(0001)<10-10>and(11-20)<10-10>components in the base material to(10-10)<11-20>and(11-20)<3-302>components in the FZ.The introduction of tensile testing resulted in a continuous stress relaxation and improved the weld joint performances. 展开更多
关键词 Ti-6Al-4 V Tungsten inert gas(TIG)weld Residual stress Local mechanical properties Crystallographic texture
原文传递
Dependence of Nitrogen/Argon Reaction Gas Amount on Structural,Mechanical and Optical Properties of Thin WNx Films
14
作者 Somayeh Asgary Amir Hoshang Ramezani 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第12期56-60,共5页
WNxfilms are deposited by reactive chemical vapor deposition at different amounts of nitrogen in gas mixtures.Experimental data demonstrate that nitrogen amount has a strong effect on microstructure, phase formation,t... WNxfilms are deposited by reactive chemical vapor deposition at different amounts of nitrogen in gas mixtures.Experimental data demonstrate that nitrogen amount has a strong effect on microstructure, phase formation,texture morphology, mechanical and optical properties of the WNxfilms. With increasing nitrogen a phase transition from a single WNxphase with low crystallinity structure to a well-mixed crystallized hexagonal WNxand face-centered-cubic W2N phases appears. Relatively smooth morphology at lower N2concentration changes to a really smooth morphology and then granular with coarse surface at higher N2concentration. The SEM observation clearly shows a columnar structure at lower N2concentration and a dense nanoplates one for higher nitrogen content. The hardness of WNxthin films mainly depends on the film microstructure. The absorbance peak position shifts to shorter wavelength continuously with increasing nitrogen amount and decreasing particle size. 展开更多
关键词 SEM mechanical and Optical properties of Thin WN_x Films Dependence of Nitrogen/argon Reaction gas Amount on Structural
下载PDF
The Effect of Argon Inert Gas on the Laser Welding Quality of Co-Cr and Ni-Cr Base Metal Alloys
15
作者 Sklavou Efthymia Poulis Nikolas Prombonas Anthony 《Journal of Biomedical Science and Engineering》 2021年第12期442-451,共10页
The purpose of this research was to study the effect of Argon inert gas on the laser welding quality of Co-Cr and Ni-Cr base metal alloys, which are widely used as Fixed Prosthodontics alloys in Dental Laboratories. A... The purpose of this research was to study the effect of Argon inert gas on the laser welding quality of Co-Cr and Ni-Cr base metal alloys, which are widely used as Fixed Prosthodontics alloys in Dental Laboratories. A total of 36 specimens were manufactured (18 of Ni-Cr alloy and 18 of Co-Cr alloy). The specimens were then divided into 3 subgroups (6 specimens each): control;argon-welded;and non-Argon welded. The specimens were cut, laser welded, radiographed and finally tested under tensile strength testing, followed by examination using Scanning Electron Microscopy. The tensile strength of welded specimens was lower than the strength of non-welded specimens, however this difference was not found to be statistically significant. The material factor (Co-Cr alloy or Ni-Cr alloy) has a statistically significant effect on the tensile strength, while the presence or not of the inert gas, as well as the combination of the two factors do not have a statistically significant effect. The laser welding process applied in daily practice (separation of specimen, formation of two cones in contact, aggregation of two cones, filling of the remaining gap by welding) is considered satisfactory in terms of weld strength. The factor of the material, as an independent factor, affects the tensile strength to a statistically significant degree, in contrast to the factor of the presence of inert gas which does not affect to a statistically significant degree. 展开更多
关键词 Laser welding Co-Cr Alloys Ni-Cr Alloys mechanical properties argon No argon Environment
下载PDF
Effect of Laser Beam Welding Parameters on Microstructure and Properties of Duplex Stainless Steel 被引量:1
16
作者 Abdel-Monem El-Batahgy Abdel-Fattah Khourshid Thoria Sharef 《Materials Sciences and Applications》 2011年第10期1443-1451,共9页
The present study is concerned with laser beam welding and its effect on size and microstructure of fusion zone then, on mechanical and corrosion properties of duplex stainless steel welded joints. In this regard, inf... The present study is concerned with laser beam welding and its effect on size and microstructure of fusion zone then, on mechanical and corrosion properties of duplex stainless steel welded joints. In this regard, influence of different laser welding parameters was clarified. Both bead-on-plate and autogenously butt welded joints were made using carbon dioxide laser with a maximum output of 9 kW in the continuous wave mode. Welded joints were subjected to visual, dye penetrant and radiography tests before sectioning it for different destructive tests. Accelerated corrosion test was carried out based on tafel plot technique. The results achieved in this investigation disclosed that welding parameters play an important role in obtaining satisfactory properties of welded joint. High laser power and/or high welding speed together with adjusting laser focused spot at specimen surface have produced welded joints with a remarkable decrease in fusion zone size and an acceptable weld profile with higher weld depth/width ratio. Besides, acceptable mechanical and corrosion properties were obtained. Using nitrogen as a shielding gas has resulted in improving mechanical and corrosion properties of welded joints in comparison with argon shielding. This is related to maintaining proper ferrite/austenite balance in both weld metal and HAZ in case of nitrogen shielding. As a conclusion, laser power, welding speed, defocusing distance and type of shielding gas combination have to be optimized for obtaining welded joints with acceptable profile as well as mechanical and corrosion properties. 展开更多
关键词 DUPLEX STAINLESS Steel LASER Beam weldING LASER Power weldING Speed DEFOCUSING Distance Shielding gas Type Fusion Zone Microstructure mechanical properties Corrosion Resistance
下载PDF
Gas tungsten arc welding of CP-copper to 304 stainless steel using different filler materials 被引量:5
17
作者 Sajjad Gholami SHIRI Mohsen NAZARZADEH +1 位作者 Mahmood SHARIFITABAR Mehdi Shafiee AFARANI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第12期2937-2942,共6页
The dissimilar joining of CP-copper to 304 stainless steel was performed by gas tungsten arc welding process using different filler materials. The results indicated the formation of defect free joint by using copper f... The dissimilar joining of CP-copper to 304 stainless steel was performed by gas tungsten arc welding process using different filler materials. The results indicated the formation of defect free joint by using copper filler material. But, the presence of some defects like solidification crack and lack of fusion caused decreasing tensile strength of other joints. In the optimum conditions, the tensile strength of the joint was 96% of the weaker material. Also, this joint was bent till to 180° without any macroscopic defects like separation, tearing or fracture. It was concluded that copper is a new and good candidate for gas tungsten arc welding of copper to 304 stainless steel. 展开更多
关键词 gas tungsten arc welding CP-copper 304 stainless steel dissimilar joint MICROSTRUCTURE mechanical properties
下载PDF
Study on gas metal arc welding of two types of TMCP steels
18
作者 HUANG Zhijun 《Baosteel Technical Research》 CAS 2023年第4期22-27,共6页
Gas metal arc welding experiments were conducted on two types of steels with 0.41% carbon equivalent(Ceq) and 0.31% Cequsing WER70T wire and 20% CO_(2)and 80% Ar as shielding gas.The two types of steels show satisfact... Gas metal arc welding experiments were conducted on two types of steels with 0.41% carbon equivalent(Ceq) and 0.31% Cequsing WER70T wire and 20% CO_(2)and 80% Ar as shielding gas.The two types of steels show satisfactory weldability.The transition temperatures of 50% upper shelf energy(Tk0.5) for Charpy-V impact test of both the welded joints are below-40 ℃.However, the toughness of the fusion line zone and heat-affected zone(HAZ) of the two steel joints exhibits differences, with the toughness of 0.41% Ceqsteel being better than that of 0.31% Ceqsteel.The Tk0.5of the fusion line zone and the HAZ of 0.41% Ceqsteel is below-60℃,whereas that of 0.31% Ceqsteel is above-40℃.The welded joint of 0.41% Ceqsteel has low hardness fluctuation, while that of 0.31% Ceqsteel exhibits a narrow, softened zone, which has no obvious influence on the tested tensile strength.The coarse grain heat-affected zone(CGHAZ)microstructure of 0.41% Ceqsteel is bainite, while that of 0.31% Ceqsteel is bainite with ferrite and minor pearlite. 展开更多
关键词 thermo-mechanically controlled processing(TMCP) COMPOSITION gas metal arc welding(GMAW) mechanical properties microstructure
下载PDF
Interfacial reaction control during pulsed argon arc welding of SiC_p/Al composites
19
作者 张义平 王少刚 徐九华 《中国有色金属学会会刊:英文版》 CSCD 2005年第S3期339-343,共5页
The interfacial reaction control of SiC_p/2124Al composites was investigated during pulsed argon arc welding. Meanwhile, the mechanical properties, the metallographic structure and interfacial microstructure of the in... The interfacial reaction control of SiC_p/2124Al composites was investigated during pulsed argon arc welding. Meanwhile, the mechanical properties, the metallographic structure and interfacial microstructure of the induced welding joint were tested and detected, respectively. The results reveal that the joint with excellent properties could be achieved by the proper selection of the special filling material and the addition of the pulse during welding. Moreover, the formation mechanism of the welding joint was discussed and the corresponding measures on further improving the quality of the welding joint of SiC_p/2124Al composites were put forward in the condition of pulsed argon arc welding. 展开更多
关键词 PULSED argon ARC welding SiC_p/Al composites joint properties formation mechanism
下载PDF
The comparison of multi-layer narrow-gap laser and arc welding of S32101 duplex stainless steel 被引量:7
20
作者 Li Junzhao Wen Kai +3 位作者 Sun Qingjie Liu Yibo Kong Bin Zeng Xianshan 《China Welding》 CAS 2022年第4期37-47,共11页
Multi-layer narrow-gap welding of thick S32101 duplex stainless steel was conducted using laser welding with beam wobble process.The phase transition,grain size,phase proportion and crystal texture of welded joint wer... Multi-layer narrow-gap welding of thick S32101 duplex stainless steel was conducted using laser welding with beam wobble process.The phase transition,grain size,phase proportion and crystal texture of welded joint were also studied and compared with gas metal arc welding process.The microhardness and tensile strength were measured and fracture surface was analyzed to evaluate the mechanical properties of welded joints.The results showed that beam wobble technology improved the misalignment of laser beam and filler wire in narrow groove and helped to avoid incomplete fusion defects.Compared to arc welding process,the groove size and heat input were reduced,while welding efficiency was increased.The faster cooling rate and lower temperature gradient of laser wobble welding favored grain refinement,while the austenite content in weld zone decreased.Both the beam wobble and swing arc were conducive to stir weld pool,optimizing the weld microstructure and joint formation.The microstructural variance in various weld passes was caused by the heat input and heat dissipation ability.The microhardness of laser welded joint was lower,while the tensile strength and elongation percentage were higher.The fracture surface of arc welded joint was featured with shallower dimples and cleavage steps. 展开更多
关键词 narrow gap welding laser welding gas metal arc welding duplex stainless steel mechanical properties
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部