Analysis, evaluation and interpretation of measured signals become important components in engineering research and practice, especially for material characteristic parameters which can not be obtained directly by exp...Analysis, evaluation and interpretation of measured signals become important components in engineering research and practice, especially for material characteristic parameters which can not be obtained directly by experimental measurements. The present paper proposes a hybrid-inverse analysis method for the identification of the nonlinear material parameters of any individual component from the mechanical responses of a global composite. The method couples experimental approach, numerical simulation with inverse search method. The experimental approach is used to provide basic data. Then parameter identification and numerical simulation are utilized to identify elasto-plastic material properties by the experimental data obtained and inverse searching algorithm. A numerical example of a stainless steel clad copper sheet is consid- ered to verify and show the applicability of the proposed hybrid-inverse method. In this example, a set of material parameters in an elasto-plastic constitutive model have been identified by using the obtained experimental data.展开更多
Blanking is a major process and has a wide range of usage in manufacturing industry. The general concept of blanking seems a simple one but governing parameters are many and have a complex relationship which directly ...Blanking is a major process and has a wide range of usage in manufacturing industry. The general concept of blanking seems a simple one but governing parameters are many and have a complex relationship which directly affect the quality of the produced parts (blanks) and also the energy efficiency of the process. The main problem is the lack of prediction capabilities of the effect of these parameters that lead to time, money and labor consuming trial and error procedures in experimental studies. Usage of FEM based programs to simulate blanking to obtain numerical results and observe the shearing mechanism is a cheap and a detailed way for industrial applications. In this study five different clearances (1%, 3%, 5%, 10% and 20%) and three different thicknesses (t = 2 mm, t = 3 mm and t = 4 mm) were used for simulation and experimental studies of the blanking process. Simulations were executed by using the FEM program, Deform 2-D. Investigations were made on the parameters related to crack progression like crack initiation and crack propagation angles, indentation angle, rollover angle and depth and also the related blanking energy values. The results of the present paper are in agreement with the results of experimental studies.展开更多
采用Al Si5铝合金焊丝,冷金属过渡方法对6061铝合金和裸钢板进行了搭接点塞焊试验,运用正交试验法优化工艺参数,分析了接头的界面结构特征及其性能.结果表明,采用上述方法成功实现了铝和裸钢板的连接,点焊接头成形美观、性能良好;工艺...采用Al Si5铝合金焊丝,冷金属过渡方法对6061铝合金和裸钢板进行了搭接点塞焊试验,运用正交试验法优化工艺参数,分析了接头的界面结构特征及其性能.结果表明,采用上述方法成功实现了铝和裸钢板的连接,点焊接头成形美观、性能良好;工艺参数显著性顺序为裸钢板孔径大小、点焊时间、送丝速度;接头为典型的点熔钎焊接头,由钎焊结合区和熔焊结合区组成;接头上的缺陷主要是气孔;接头的最大抗拉剪载荷可达4 k N以上,断裂方式为撕裂型断裂.展开更多
基金supported by the National Natural Science Foundation of China (Nos.10732080 and 10572102)National Basic Research Program of China (No.2007CB714000)
文摘Analysis, evaluation and interpretation of measured signals become important components in engineering research and practice, especially for material characteristic parameters which can not be obtained directly by experimental measurements. The present paper proposes a hybrid-inverse analysis method for the identification of the nonlinear material parameters of any individual component from the mechanical responses of a global composite. The method couples experimental approach, numerical simulation with inverse search method. The experimental approach is used to provide basic data. Then parameter identification and numerical simulation are utilized to identify elasto-plastic material properties by the experimental data obtained and inverse searching algorithm. A numerical example of a stainless steel clad copper sheet is consid- ered to verify and show the applicability of the proposed hybrid-inverse method. In this example, a set of material parameters in an elasto-plastic constitutive model have been identified by using the obtained experimental data.
文摘Blanking is a major process and has a wide range of usage in manufacturing industry. The general concept of blanking seems a simple one but governing parameters are many and have a complex relationship which directly affect the quality of the produced parts (blanks) and also the energy efficiency of the process. The main problem is the lack of prediction capabilities of the effect of these parameters that lead to time, money and labor consuming trial and error procedures in experimental studies. Usage of FEM based programs to simulate blanking to obtain numerical results and observe the shearing mechanism is a cheap and a detailed way for industrial applications. In this study five different clearances (1%, 3%, 5%, 10% and 20%) and three different thicknesses (t = 2 mm, t = 3 mm and t = 4 mm) were used for simulation and experimental studies of the blanking process. Simulations were executed by using the FEM program, Deform 2-D. Investigations were made on the parameters related to crack progression like crack initiation and crack propagation angles, indentation angle, rollover angle and depth and also the related blanking energy values. The results of the present paper are in agreement with the results of experimental studies.
文摘采用Al Si5铝合金焊丝,冷金属过渡方法对6061铝合金和裸钢板进行了搭接点塞焊试验,运用正交试验法优化工艺参数,分析了接头的界面结构特征及其性能.结果表明,采用上述方法成功实现了铝和裸钢板的连接,点焊接头成形美观、性能良好;工艺参数显著性顺序为裸钢板孔径大小、点焊时间、送丝速度;接头为典型的点熔钎焊接头,由钎焊结合区和熔焊结合区组成;接头上的缺陷主要是气孔;接头的最大抗拉剪载荷可达4 k N以上,断裂方式为撕裂型断裂.