期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
A Comparative Study on the Efficacy between Minimally Invasive Caries Removal Technique involving Carisolv and Traditional Mechanical Caries Removal in Treating Dental Caries in Children
1
作者 Jiaying Song 《Journal of Clinical and Nursing Research》 2020年第3期85-88,共4页
Objective:To explore the curative effect of Carisolv,a minimally invasive caries removal technique and traditional mechanical caries removal treatment on children’s dental caries.Methods:A total of 97 children with d... Objective:To explore the curative effect of Carisolv,a minimally invasive caries removal technique and traditional mechanical caries removal treatment on children’s dental caries.Methods:A total of 97 children with dental caries who were treated in the Department of Stomatology in Affiliated Hospital of Chifeng University,Chifeng from September 2017 to May 2019 were selected and recruited as the research subjects.They were divided into two groups by random number table method.Forty-nine individuals were assigned in the control group while the remaining 48 individuals in the observation group.The control group was treated with traditional mechanical caries removal method,and the observation group was treated with minimally invasive caries removal technique,i.e.Carisolv.Both groups were followed up for six months.The degree of pain,recovery time of dental function and complications after six months of treatment were observed in the two groups of children.Results:During the treatment,compared with the control group,the children in the observation group experienced lower degree of pain and had shorter recovery time of dental function.After six months of treatment,the incidence of complications in the observation group was lower than that in the control group.The difference was statistically significant(P<0.05).Conclusion:Compared with traditional mechanical caries removal method,Carisolv,a minimally invasive caries removal technique could reduce the pain of children during the treatment process,shorten the time to restore dental function,reduce the occurrence of complications,and had a better therapeutic effect in treating children’s dental caries. 展开更多
关键词 Dental caries Traditional mechanical caries removal Minimally invasive caries removal involving Carisolv Degree of pain
下载PDF
Surfactant-Modified Hydrophobic Biochar Derived from Laver (Porphyra haitanensis) with Superior Removal Performance for Kitchen Oil
2
作者 Jiaxing Sun Lili Ji +6 位作者 Qianrui He Ran Li Xiaoyue Xia Yaning Wang Yi Yang Lu Cai Jian Guo 《Journal of Renewable Materials》 EI 2023年第8期3227-3243,共17页
In this study,a novel absorpent(MSAR600℃)with a hydrophobic surface and hierarchical porous structure for the removal of kitchen oil was facilely fabricated from the macroalgae,laver(Porphyra haitanensis)by incorpor-... In this study,a novel absorpent(MSAR600℃)with a hydrophobic surface and hierarchical porous structure for the removal of kitchen oil was facilely fabricated from the macroalgae,laver(Porphyra haitanensis)by incorpor-ating high-temperature carbonization and alkyl polyglucosides(APG)and rhamnolipid(RL)surfactants modifi-cation.The characterization results showed MSAR600℃ possessed a louts-leaf-like papillae microstructure with high contact angle(137.5°),abundant porous structure with high specific surface area(23.4 m^(2)/g),and various oxygen-containing functional groups(-OH,C=O,C-O).Batch adsorption experiments were conducted to inves-tigate the effect of adsorption time,temperature,pH,and absorbent dose on kitchen oil adsorption performance.Then the practical application for the removal of kitchen oil using MSAR600℃ was also performed.The results showed that MSAR600℃ had a higher removal efficiency for kitchen oil(75.98%),compared with the commercial detergent(72.3%).This study demonstrates an example of fabricating a green tableware detergent for enhanced removal performance of kitchen oil. 展开更多
关键词 Laver biochar surfactant modification kitchen oil removal mechanism
下载PDF
Energy beam-based direct and assisted polishing techniques for diamond:A review
3
作者 Zhuo Li Feng Jiang +7 位作者 Zhengyi Jiang Zige Tian Tian Qiu Tao Zhang Qiuling Wen Xizhao Lu Jing Lu Hui Huang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期93-124,共32页
Diamond is a highly valuable material with diverse industrial applications,particularly in the fields of semiconductor,optics,and high-power electronics.However,its high hardness and chemical stability make it difficu... Diamond is a highly valuable material with diverse industrial applications,particularly in the fields of semiconductor,optics,and high-power electronics.However,its high hardness and chemical stability make it difficult to realize high-efficiency and ultra-low damage machining of diamond.To address these challenges,several polishing methods have been developed for both single crystal diamond(SCD)and polycrystalline diamond(PCD),including mechanical,chemical,laser,and ion beam processing methods.In this review,the characteristics and application scope of various polishing technologies for SCD and PCD are highlighted.Specifically,various energy beam-based direct and assisted polishing technologies,such as laser polishing,ion beam polishing,plasma-assisted polishing,and laser-assisted polishing,are summarized.The current research progress,material removal mechanism,and infuencing factors of each polishing technology are analyzed.Although some of these methods can achieve high material removal rates or reduce surface roughness,no single method can meet all the requirements.Finally,the future development prospects and application directions of different polishing technologies are presented. 展开更多
关键词 single crystal diamond polycrystalline diamond energy beam polishing technology material removal mechanism influencing factors
下载PDF
Study of the material removal mechanism of glass-ceramics based on consecutive incremental loading in ductile-regime grinding 被引量:2
4
作者 Xue Li 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2020年第2期88-95,共8页
Glass-ceramics have many excellent properties and are widely used in various fields. During the grinding process,the workpiece surface is typically subject to material removal by grit of incremental heights, which has... Glass-ceramics have many excellent properties and are widely used in various fields. During the grinding process,the workpiece surface is typically subject to material removal by grit of incremental heights, which has rarely been the focus of research. As such, it is necessary to study the material removal mechanism of glass-ceramics under consecutive incremental loading, which more closely reflects the actual grinding process. In this paper,to analyze the plastic deformation and residual stress of lithium aluminosilicate(LAS) glass-ceramics, a finite element model is established based on the Drucker–Prager yield criterion for ductile regimes. A nano-scratch test was also conducted and the test results show that both the residual depth and residual stress increase with an increase in the number of increments, and that consecutive incremental loading promotes the plastic deformation of glass-ceramics and increases the residual stress of the material in the ductile-regime process. These findings provide guidance for achieving higher dimensional accuracy in the actual grinding of glass-ceramics parts. 展开更多
关键词 GRINDING GLASS-CERAMICS Scratch tests Material removal mechanism Consecutive incremental loading
下载PDF
Molecular dynamics simulation of the material removal in the scratching of 4H-SiC and 6H-SiC substrates 被引量:4
5
作者 Zige Tian Xun Chen Xipeng Xu 《International Journal of Extreme Manufacturing》 EI 2020年第4期86-100,共15页
Single crystal silicon carbide(SiC)is widely used for optoelectronics applications.Due to the anisotropic characteristics of single crystal materials,the C face and Si face of single crystal SiC have different physica... Single crystal silicon carbide(SiC)is widely used for optoelectronics applications.Due to the anisotropic characteristics of single crystal materials,the C face and Si face of single crystal SiC have different physical properties,which may fit for particular application purposes.This paper presents an investigation of the material removal and associated subsurface defects in a set of scratching tests on the C face and Si face of 4H-SiC and 6H-SiC materials using molecular dynamics simulations.The investigation reveals that the sample material deformation consists of plastic,amorphous transformations and dislocation slips that may be prone to brittle split.The results showed that the material removal at the C face is more effective with less amorphous deformation than that at the Si face.Such a phenomenon in scratching relates to the dislocations on the basal plane(0001)of the SiC crystal.Subsurface defects were reduced by applying scratching cut depths equal to integer multiples of a half molecular lattice thickness,which formed a foundation for selecting machining control parameters for the best surface quality. 展开更多
关键词 material removal mechanism molecular dynamics simulation subsurface defects SCRATCHING 4H-SiC and 6H-SiC
下载PDF
Material Removal Behavior and Surface Integrity in Grinding of UltrafineGrained WC-Co Materials 被引量:1
6
作者 原一高 车俊华 +3 位作者 王焱坤 孙卫权 白佳声 祝新发 《Journal of Donghua University(English Edition)》 EI CAS 2015年第2期219-224,共6页
Due to the excellent combination of wear resistance and fracture toughness,the ultrafine-grained WC-Co composites can significantly improve the durability and reliability of industrial tools.However,the grinding of ul... Due to the excellent combination of wear resistance and fracture toughness,the ultrafine-grained WC-Co composites can significantly improve the durability and reliability of industrial tools.However,the grinding of ultrafine-grained WC-Co remains a challenge.In order to provide an experimental basis for improving grinding quality of ultrafine-grained WC-Co,a series of surface grinding experiments on ultrafine-grained WC-Co hardmetals were conducted by diamond wheel under various grinding conditions,and the material removal behavior and surface integrity in grinding of ultrafine-grained WC-Co materials were characterized by means of scanning electron microscopy(SEM),X-ray microstress analyzer and surface roughness analyzer in this paper.The results indicate that the material removal behavior in grinding of ultrafine-grained WC-Co materials is determined not only by the abrasive grain size on the wheel,but also by the depth of cut.The roughness values of ground surface increase with increasing grit size of diamond wheel,and increase initially,then decrease with increase in depth of cut.Grinding causes the residual compressive stress in the surface layer of ground cemented carbides under various grinding conditions;the magnitude of residual surface stress increases with increasing grit size of diamond wheel,and isn't changed obviously along with the change of depth of cut. 展开更多
关键词 ultrafine-grained WC-Co cemented carbides GRINDING removal mechanisms surface roughness residual stress
下载PDF
The technology and mechanism of removal of plastic mulch and land preparation
7
作者 ZHANG Huiyou HOU Shulin +2 位作者 NA Mingjun YANG Xiaoli BAI Shengnan 《Journal of Northeast Agricultural University(English Edition)》 CAS 2007年第1期72-75,共4页
In this article,the characteristic of the field plastic mulch, the craft for mechanization removal and land preparation of plastic mulch and the mechanism frequently used in the removal and land preparation of plasti... In this article,the characteristic of the field plastic mulch, the craft for mechanization removal and land preparation of plastic mulch and the mechanism frequently used in the removal and land preparation of plastic mulch were introduced, which offered references for the design of removal mechanism and land preparation of plastic mulch and structural optimization combination of working components. 展开更多
关键词 mechanism for removal and land preparation removal of plastic film land preparation mechanism structural optimization
下载PDF
Effect of tool geometry on ultraprecision machining of soft-brittle materials:a comprehensive review
8
作者 Weihai Huang Jiwang Yan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期60-98,共39页
Brittle materials are widely used for producing important components in the industry of optics,optoelectronics,and semiconductors.Ultraprecision machining of brittle materials with high surface quality and surface int... Brittle materials are widely used for producing important components in the industry of optics,optoelectronics,and semiconductors.Ultraprecision machining of brittle materials with high surface quality and surface integrity helps improve the functional performance and lifespan of the components.According to their hardness,brittle materials can be roughly divided into hard-brittle and soft-brittle.Although there have been some literature reviews for ultraprecision machining of hard-brittle materials,up to date,very few review papers are available that focus on the processing of soft-brittle materials.Due to the‘soft’and‘brittle’properties,this group of materials has unique machining characteristics.This paper presents a comprehensive overview of recent advances in ultraprecision machining of soft-brittle materials.Critical aspects of machining mechanisms,such as chip formation,surface topography,and subsurface damage for different machining methods,including diamond turning,micro end milling,ultraprecision grinding,and micro/nano burnishing,are compared in terms of tool-workpiece interaction.The effects of tool geometries on the machining characteristics of soft-brittle materials are systematically analyzed,and dominating factors are sorted out.Problems and challenges in the engineering applications are identified,and solutions/guidelines for future R&D are provided. 展开更多
关键词 ultraprecision machining soft-brittle materials ductile machining tool geometries material removal mechanisms surface integrity
下载PDF
Precision Grinding of Reaction Bonded Silicon Carbide Using Coarse Grain Size Diamond Wheels 被引量:3
9
作者 ZHAO Qingliang CHEN Junyun BRINKSMEIER E 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第3期269-275,共7页
Reaction bonded SiC(RBSiC) is attractive for optical application because of its favorable properties and low fabrication cost. However, the difficultness and cost involved in RBSiC grinding limit its application. Th... Reaction bonded SiC(RBSiC) is attractive for optical application because of its favorable properties and low fabrication cost. However, the difficultness and cost involved in RBSiC grinding limit its application. The investigation on high efficient and low-cost machining with good grinding quality is desired. Generally, high efficient machining for RBSiC is realized by using coarse grain size grinding wheels, but serious grinding damage is inevitable. In this paper, monolayer nickel electroplated coarse grain size diamond grinding wheels with grain sizes of 46 μm, 91 μm, and 151 μm were applied to the grinding of RBSiC. An electrolytic in-process dressing(ELID) assisted conditioning technique was first developed by using cup shape copper bonded conditioning wheels with grain sizes of 15 μm and 91 μm to generate the conditioned coarse grain size wheels with minimized wheel run-out error within 2 μm, constant wheel peripheral envelop as well as top-flattened diamond grains. Then, the grinding experiments on RBSiC were carried out to investigate the grinding performance and material removal mechanism. The experimental results indicate that the developed conditioning technique is applicable and feasible to condition the coarse grain size diamond wheels under optimal conditioning parameters, and the material removal mechanism involved in RBSiC grinding is the combination of brittle fracture and ductile deformation to generate smooth ground surface. This research is significant for the high efficient and low-cost precision grinding of RBSiC with good ground surface quality. 展开更多
关键词 precision grinding SIC coarse grain size diamond wheel ELID assisted conditioning material removal mechanism
下载PDF
Material removal rate in chemical-mechanical polishing of wafers based on particle trajectories 被引量:3
10
作者 苏建修 陈锡渠 +1 位作者 杜家熙 康仁科 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2010年第5期145-150,共6页
Distribution forms of abrasives in the chemical mechanical polishing(CMP) process are analyzed based on experimental results.Then the relationships between the wafer,the abrasive and the polishing pad are analyzed b... Distribution forms of abrasives in the chemical mechanical polishing(CMP) process are analyzed based on experimental results.Then the relationships between the wafer,the abrasive and the polishing pad are analyzed based on kinematics and contact mechanics.According to the track length of abrasives on the wafer surface,the relationships between the material removal rate and the polishing velocity are obtained.The analysis results are in accord with the experimental results.The conclusion provides a theoretical guide for further understanding the material removal mechanism of wafers in CMP. 展开更多
关键词 chemical mechanical polishing material removal mechanism ABRASIVE material removal rate
原文传递
Plasma-enabled electrochemical jet micromachining of chemically inert and passivating material 被引量:1
11
作者 Jiajun Lu Shunda Zhan +1 位作者 Bowen Liu Yonghua Zhao 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2022年第4期215-233,共19页
Electrochemical jet machining(EJM)encounters significant challenges in the microstructuring of chemically inert and passivating materials because an oxide layer is easily formed on the material surface,preventing the ... Electrochemical jet machining(EJM)encounters significant challenges in the microstructuring of chemically inert and passivating materials because an oxide layer is easily formed on the material surface,preventing the progress of electrochemical dissolution.This research demonstrates for the first time a jet-electrolytic plasma micromachining(Jet-EPM)method to overcome this problem.Specifically,an electrolytic plasma is intentionally induced at the jet-material contact area by applying a potential high enough to surmount the surface boundary layer(such as a passive film or gas bubble)and enable material removal.Compared to traditional EJM,introducing plasma in the electrochemical jet system leads to considerable differences in machining performance due to the inclusion of plasma reactions.In this work,the implementation of Jet-EPM for fabricating microstructures in the semiconductor material 4H-SiC is demonstrated,and the machining principle and characteristics of Jet-EPM,including critical parameters and process windows,are comprehensively investigated.Theoretical modeling and experiments have elucidated the mechanisms of plasma ignition/evolution and the corresponding material removal,showing the strong potential of Jet-EPM for micromachining chemically resistant materials.The present study considerably augments the range of materials available for processing by the electrochemical jet technique. 展开更多
关键词 electrochemical jet machining electrolytic plasma PASSIVATION oxide film breakdown material removal mechanism
下载PDF
High Efficiency Axial Deep Creep-Feed Grinding Machining Technology of Engineering Ceramics Materials 被引量:2
12
作者 郭昉 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期902-906,共5页
Axial deep creep-feed grinding machining technology is a high efficiency process method of engineering ceramics materials, which is an original method to process the cylindrical ceramics materials or hole along its ax... Axial deep creep-feed grinding machining technology is a high efficiency process method of engineering ceramics materials, which is an original method to process the cylindrical ceramics materials or hole along its axis. The analysis of axial force and edge fracture proved the cutting thickness and feed rate could be more than 5-10 mm and 200 mm/min respectively in once process, and realized high efficiency, low-cost process of engineering ceramics materials. Compared with high speed-deep grinding machining, this method is also a high efficiency machining technology of engineering ceramics materials as well as with low cost. In addition, removal mechanism analyses showed that both median/radial cracks and lateral cracks appeared in the part to be removed, and the processed part is seldom destroyed, only by adjusting the axial force to control the length of transverse cracks. 展开更多
关键词 ceramics materials axial deep creep-feed grinding small diamond grinding wheel removal mechanism
下载PDF
Chemically-induced active micro-nano bubbles assisting chemical mechanical polishing:Modeling and experiments 被引量:1
13
作者 Lei XU Kihong PARK +5 位作者 Hong LEI Pengzhan LIU Eungchul KIM Yeongkwang CHO Taesung KIM Chuandong CHEN 《Friction》 SCIE EI CAS CSCD 2023年第9期1624-1640,共17页
The material loss caused by bubble collapse during the micro-nano bubbles auxiliary chemical mechanical polishing(CMP)process cannot be ignored.In this study,the material removal mechanism of cavitation in the polishi... The material loss caused by bubble collapse during the micro-nano bubbles auxiliary chemical mechanical polishing(CMP)process cannot be ignored.In this study,the material removal mechanism of cavitation in the polishing process was investigated in detail.Based on the mixed lubrication or thin film lubrication,bubble-wafer plastic deformation,spherical indentation theory,Johnson-Cook(J-C)constitutive model,and the assumption of periodic distribution of pad asperities,a new model suitable for micro-nano bubble auxiliary material removal in CMP was developed.The model integrates many parameters,including the reactant concentration,wafer hardness,polishing pad roughness,strain hardening,strain rate,micro-jet radius,and bubble radius.The model reflects the influence of active bubbles on material removal.A new and simple chemical reaction method was used to form a controllable number of micro-nano bubbles during the polishing process to assist in polishing silicon oxide wafers.The experimental results show that micro-nano bubbles can greatly increase the material removal rate(MRR)by about 400%and result in a lower surface roughness of 0.17 nm.The experimental results are consistent with the established model.In the process of verifying the model,a better understanding of the material removal mechanism involved in micro-nano bubbles in CMP was obtained. 展开更多
关键词 micro-nano bubbles mixed lubrication material removal mechanism chemical mechanical polishing(CMP) MODELING
原文传递
Formation and Removement Mechanism of Haze Defects on(111)p-type Silicon Wafers
14
作者 徐岳生 李养贤 +3 位作者 刘彩池 鞠玉林 唐建 朱则韶 《Rare Metals》 SCIE EI CAS CSCD 1994年第1期31-36,共6页
The haze defects on p-type (111) silicon wafers were investigated by means of chemical etching, Fouriertransform infra-red microscopy (FTIR), spreading resistance measurement. secondary ion mass spectroscopy(SLMS), tr... The haze defects on p-type (111) silicon wafers were investigated by means of chemical etching, Fouriertransform infra-red microscopy (FTIR), spreading resistance measurement. secondary ion mass spectroscopy(SLMS), transmission electron microscopy (TEM) equipped with an energy-dispersive X-ray spectrometer(EDX). The haze defects are the precipitates of silicide of metal impurities (Fe, Ni) on the wafer surface.The formation of haze defects can efficiently be inhibited by utilizing the technology of fast neutronirradiation combined with the internal gettering (IG), and then, the formation and removement mechanismof the haze defects have been discussed in this paper. 展开更多
关键词 Oxidation haze defects Formation and removement mechanism Fast-neutron irradiation Internal gettering (IG)
下载PDF
Fiber orientation effects on grinding characteristics and removal mechanism of 2.5D C_(f)/SiC composites
15
作者 Cheng CAO Qinghua SONG +3 位作者 Hui FU Hansong JI Zhanqiang LIU Liping JIANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第12期425-441,共17页
Carbon fiber reinforced silicon carbide(C_(f)/SiC)composites are widely used in aerospace for their excellent mechanical properties.However,the quality of the machined surface is poor and unpredictable due to the mate... Carbon fiber reinforced silicon carbide(C_(f)/SiC)composites are widely used in aerospace for their excellent mechanical properties.However,the quality of the machined surface is poor and unpredictable due to the material heterogeneity induced by complex removal mechanism.To clarify the effects of fiber orientation on the grinding characteristics and removal mechanism,single grit scratch experiments under different fiber orientations are conducted and a three-phase numerical modelling method for 2.5D C_(f)/SiC composites is proposed.Three fiber cutting modes i.e.,transverse,normal and longitudinal,are defined by fiber orientation and three machining directions i.e.,MA(longitudinal and normal),MB(longitudinal and transverse)and MC(normal and transverse),are selected to investigate the effect of fiber orientation on grinding force and micro-morphology.Besides,a three-phase cutting model of 2.5D C_(f)/SiC composites considering the mechanical properties of the matrix,fiber and interface is developed.Corresponding simulations are performed to reveal the micro-mechanism of crack initiation and extension as well as the material removal mechanism under different fiber orientations.The results indicate that the scratching forces fluctuate periodically,and the order of mean forces is MA>MC>MB.Cracks tend to grow along the fiber axis,which results in the largest damage layer for transverse fibers and the smallest for longitudinal fibers.The removal modes of transverse fibers are worn,fracture and peel-off,in which normal fibers are pullout and outcrop and the longitudinal fibers are worn and push-off.Under the stable cutting condition,the change of contact area between fiber and grit leads to different removal modes of fiber in the same cutting mode,and the increase of contact area results in the aggravation of fiber fracture. 展开更多
关键词 2.5D C_(f)/SiC composites Material removal mechanism Numerical modelling Single grit scratch experiments Surface morphology
原文传递
Synergetic catalytic removal of chlorobenzene and NOχfrom waste incineration exhaust over MnNb0.4Ce0.2Oχcatalysts:Performance and mechanism study 被引量:9
16
作者 Bo Yang Qijie Jin +6 位作者 Qiong Huang Mindong Chen Leilei Xu Yuesong Shen Haitao Xu Shemin Zhu Xiujun Li 《Journal of Rare Earths》 SCIE EI CAS CSCD 2020年第11期1178-1189,I0002,共13页
Nb doped MnCe0.2Ox complex oxides catalysts prepared via a homogeneous precipitation method were investigated for synergistic catalytic removal of NOx and chlorobenzene(CB)at low temperatures.The MnNb0.4Ce0.2Ox cataly... Nb doped MnCe0.2Ox complex oxides catalysts prepared via a homogeneous precipitation method were investigated for synergistic catalytic removal of NOx and chlorobenzene(CB)at low temperatures.The MnNb0.4Ce0.2Ox catalyst with a molar ratio of Nb/Mn=0.4 exhibits excellent activity and the NOx and CB removal efficiency reaches 94.5%and 96%at 220℃,respectively.Furthermore,the NOx and CB removal efficiency of MnNb0.4Ce0.2Ox still remains above 80%after injecting 300 ppm SO2 and 7 vol%H2 O for 36 h.In addition,the presence of CB and NOx+NH3 can improve the NOx and CB removal efficiency of MnNb0.4Ce0.2Ox,respectively.The analysis results from N2-BET,Py-IR,H2-TPR and NH3-TPD reveal that the introduction of Nb increases the average pore size,pore volume and surface area,promoted the growth of Lewis acid amount obviously,and enhances redox ability of MnCe0.2Ox at 100-250℃.Moreover,the molecular migration process of NOx,NH3,CB and SO2 in NH3-SCR and CB oxidation reaction over MnNb0.4Ce0.2Ox catalysts were systematically studied.In situ DRIFTS,FT-IR and XPS also confirm that the adsorption of sulfate species and SO2 on the surface of MnNb0.4Ce0.2Ox is inhibited effectively by the introduction of Nb in the presence of SO2 and H2 O.Moreover,Nb additives also enhance the structural stability of MnNb0.4Ce0.2Ox,due to the interactions among Mn,Nb and Ce.The NH3-TPD,H2-TPR and in situ DRIFTS results also confirm that the MnNb0.4Ce0.2Ox still retains abundant acid sites and high redox ability in the presence of SO2 and H2O.In summary,MnNb0.4Ce0.2Ox catalysts represent a promising and effective candidate for controlling NOx and CB at low temperatures. 展开更多
关键词 Synergistic catalytic removal Nitrogen oxides(NOx) Chlorobenzene(CB) Hydrothermal stability removal mechanism Rare earths
原文传递
Preparation and characterization of boron-doped corn straw biochar: Fe(Ⅱ) removal equilibrium and kinetics 被引量:6
17
作者 Long Sui Chunyu Tang +3 位作者 Qing Du Ying Zhao Kui Cheng Fan Yang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2021年第8期116-123,共8页
Nowadays,iron ions as a ubiquitous heavy metal pollutant are gradually concerned and the convenient and quick removal of excessive iron ions in groundwater has become a major challenge for the safety of drinking water... Nowadays,iron ions as a ubiquitous heavy metal pollutant are gradually concerned and the convenient and quick removal of excessive iron ions in groundwater has become a major challenge for the safety of drinking water.In this study,boron-doped biochar(B-BC)was successfully prepared at various preparation conditions with the addition of boric acid.The as-prepared material has a more developed pore structure and a larger specific surface area(up to 897.97 m2/g).A series of characterization results shows that boric acid effectively activates biochar,and boron atoms are successfully doped on biochar.Compared with the ratio of raw materials,the pyrolysis temperature has a greater influence on the amount of boron doping.Based on Langmuir model,the maximum adsorption capacity of 800 B-BC1:2 at25℃,40℃,55℃ are 50.02 mg/g,95.09 mg/g,132.78 mg/g,respectively.Pseudo-second-order kinetic model can better describe the adsorption process,the adsorption process is mainly chemical adsorption.Chemical complexation,ions exchange,and co-precipitation may be the main mechanisms for Fe2+removal. 展开更多
关键词 Boron-doped biochar Pyrolysis temperature Iron ions removal mechanisms
原文传递
Removal of antibiotic-resistant genes during drinking water treatment:A review 被引量:5
18
作者 Tuqiao Zhang Kunyuan Lv +2 位作者 Qingxiao Lu Lili Wang Xiaowei Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2021年第6期415-429,共15页
Once contaminate the drinking water source,antibiotic resistance genes(ARGs)will propagate in drinking water systems and pose a serious risk to human health.Therefore,the drinking water treatment processes(DWTPs)are c... Once contaminate the drinking water source,antibiotic resistance genes(ARGs)will propagate in drinking water systems and pose a serious risk to human health.Therefore,the drinking water treatment processes(DWTPs)are critical to manage the risks posed by ARGs.This study summarizes the prevalence of ARGs in raw water sources and treated drinking water worldwide.In addition,the removal efficiency of ARGs and related mechanisms by different DWTPs are reviewed.Abiotic and biotic factors that affect ARGs elimination are also discussed.The data on presence of ARGs in drinking water help come to the conclusion that ARGs pollution is prevalent and deserves a high priority.Generally,DWTPs indeed achieve ARGs removal,but some biological treatment processes such as biological activated carbon filtration may promote antibiotic resistance due to the enrichment of ARGs in the biofilm.The finding that disinfection and membrane filtration are superior to other DWTPs adds weight to the advice that DWTPs should adopt multiple disinfection barriers,as well as keep sufficient chlorine residuals to inhibit re-growth of ARGs during subsequent distribution.Mechanistically,DWTPs obtain direct and inderect ARGs reduction through DNA damage and interception of host bacterias of ARGs.Thus,escaping of intracellular ARGs to extracellular environment,induced by DWTPs,should be advoided.This review provides the theoretical support for developping efficient reduction technologies of ARGs.Future study should focus on ARGs controlling in terms of transmissibility or persistence through DWTPs due to their biological related nature and ubiquitous presence of biofilm in the treatment unit. 展开更多
关键词 Antibiotic resistance genes Drinking water treatment processes removal mechanism Influencing factors
原文传递
Preparation and evaluation of bis(diallyl alkyl tertiary ammonium salt) polymer as a promising adsorbent for phosphorus removal 被引量:3
19
作者 Zhengchi Yang Lihua Liu +4 位作者 Lu Zhao Gang Su Zuoxiao Wei Anping Tang Jianrong Xue 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第12期24-37,共14页
Problems associated with water eutrophication due to high phosphorus concentrations and related environmentally safe solutions have attracted wide attention.A novel bis(diallyl alkyl tertiary ammonium salt)polymer,par... Problems associated with water eutrophication due to high phosphorus concentrations and related environmentally safe solutions have attracted wide attention.A novel bis(diallyl alkyl tertiary ammonium salt)polymer,particularly poly(N1,N1,N6,N6-tetraallylhexane-1,6-diammonium dichloride)(PTAHDADC),was synthesized and characterized by Fourier transform infrared spectroscopy,nuclear magnetic resonance,scanning electron microscopy,mercury intrusion method,and thermogravimetric analysis.The adsorption characteristics in phosphorus were evaluated in dilute solution,and the recycling properties of PTAHDADC were investigated.Results showed that PTAHDADC possessed macropores with a size distribution ranging from 30 to 130μm concentrating at 63μm in diameter and had 46.52%of porosity,excellent thermal stability below 530 K,and insolubility.PTAHDADC could effectively remove phosphorus at p H=7–11 and had a removal efficiency exceeding 98.4%at pH=10–11.The adsorption equilibrium data of PTAHDADC for phosphorus accorded well with the Langmuir and pseudo-second-order kinetic models.Maximum adsorption capacity was 52.82 mg/g at 293 K.PTAHDADC adsorbed phosphorus rapidly and reached equilibrium within 90 min.Calculated activation energy Eawas 15.18 k J/mol.PTAHDADC presented an excellent recyclability with only 8.23%loss of removal efficiency after five adsorption–desorption cycles.The morphology and structure of PTAHDADC slightly changed as evidenced by the pre-and post-adsorption of phosphorus,but the process was accompanied by the partial deprotonation of the(–CH2)3-NH+group of PTAHDADC.The adsorption was a spontaneous exothermic process driven by entropy through physisorption,electrostatic attraction,and ion exchange.Survey results showed that PTAHDADC was a highly efficient and fast-adsorbing phosphorus-removal material prospective in treating wastewater. 展开更多
关键词 Bis(diallyl alkyl tertiary ammonium salt)polymer Phosphorus Adsorption thermodynamics Adsorption kinetics removal mechanism
原文传递
Removal mechanisms of heavy metal pollution from urban runoff in wetlands 被引量:2
20
作者 Zhiming ZHANG Baoshan CUI Xiaoyun FAN 《Frontiers of Earth Science》 SCIE CAS CSCD 2012年第4期433-444,共12页
Solid particles, particularly urban surface dust in urban environments contain large quantities of pollu- tants. It is considered that urban surface dust is a major pollution source of urban stormwater runoff. The sto... Solid particles, particularly urban surface dust in urban environments contain large quantities of pollu- tants. It is considered that urban surface dust is a major pollution source of urban stormwater runoff. The storm- water runoffwashes away urban surface dust and dissolves pollutants adsorbed onto the dust and finally discharges into receiving water bodies. The quality of receiving water bodies can be deteriorated by the dust and pollutants in it. Polluted waters can be purified by wetlands with various physical, chemical, and biologic processes. These pro- cesses have been employed to treat pollutants in urban stormwater runoff for many years because purification of treatment wetlands is a natural process and a low-cost method. In this paper, we reviewed the processes involved during pollutants transport in urban environments. Parti- cularly, when the urban stormwater runoff enters into wetlands, their removal mechanisms involving various physical, chemical and biologic processes should been understood. Wetlands can remove heavy metals by absorbing and binding them and make them form a part of sediment. However, heavy metals can be released into water when the conditions changed. This information is important for the use of wetlands for removing of pollutants and reusing stormwater. 展开更多
关键词 WETLANDS heavy metal stormwater rtmoff removal mechanisms
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部