期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Expression of Bone-related Genes in Bone Marrow MSCs after Cyclic Mechanical Strain: Implications for Distraction Osteogenesis 被引量:12
1
作者 Meng-chun Qi Shu-juan Zou +2 位作者 Li-chi Han Hai-xiao Zhou Jing Hu 《International Journal of Oral Science》 SCIE CAS CSCD 2009年第3期143-150,共8页
Aim Understanding the response of mesenchymal stem cells (MSCs) to mechanical strain and their consequent gene expression patterns will broaden our knowledge of the mechanobiology of distraction osteogenesis. Method... Aim Understanding the response of mesenchymal stem cells (MSCs) to mechanical strain and their consequent gene expression patterns will broaden our knowledge of the mechanobiology of distraction osteogenesis. Methodology In this study, a single period of cyclic mechanical stretch (0.5 Hz, 2,000 με) was performed on rat bone marrow MSCs. Cellular proliferation and alkaline phosphatase (ALP) activity was examined. The mRNA expression of six bone-related genes (Ets-1, bFGF, IGF-Ⅱ, TGF-β, Cbfal and ALP) was detected using real-time quantitative RT-PCR. Results The results showed that mechanical strain can promote MSCs proliferation, increase ALP activity, and up-regulate the expression of these genes. A significant increase in Ets-1 expression was detected immediately after mechanical stimulation, but Cbfal expression became elevated later. The temporal expression pattem of ALP coincided perfectly with Cbfal. Conclusion The results of this study suggest that mechanical strain may act as a stimulator to induce differentiation of MSCs into osteoblasts, and that these bone-related genes may play different roles in the response of MSCs to mechanical stimulation. 展开更多
关键词 distraction osteogenesis mechanical strain mesenchymal stem cell (MSC) osteogenic factor gene expression
下载PDF
Effects of mechanical strain amplitude on the isothermal fatigue behavior of H13 被引量:2
2
作者 Yan Zeng Peng-peng Zuo +1 位作者 Xiao-chun Wu Shu-wen Xia 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第9期1004-1009,共6页
Isothermal fatigue (IF) tests were performed on H13 tool steel subjected to three different mechanical strain amplitudes at a constant temperature to determine the effects of mechanical strain amplitude on the microst... Isothermal fatigue (IF) tests were performed on H13 tool steel subjected to three different mechanical strain amplitudes at a constant temperature to determine the effects of mechanical strain amplitude on the microstructure of the steel samples. The samples' extent of damage after IF tests was compared by observation of their cracks and calculation of their damage parameters. Optical microscopy (OM) and scanning electron microscopy (SEM) were used to observe the microstructure of the samples. Cracks were observed to initiate at the surface because the strains and stresses there were the largest during thermal cycling. Mechanical strain accelerated the damage and softening of the steel. A larger mechanical strain caused greater deformation of the steel, which made the precipitated carbides easier to gather and grow along the deformation direction, possibly resulting in softening of the material or the initiation of cracks. 展开更多
关键词 tool steel HARDNESS MICROSTRUCTURE isothermal fatigue mechanical strain
下载PDF
In vivo evidence of IGF-I–estrogen crosstalk in mediating the cortical bone response to mechanical strain 被引量:1
3
作者 Subburaman Mohan Chetan Girijanand Bhat +1 位作者 Jon E Wergedal Chandrasekhar Kesavan 《Bone Research》 SCIE CAS 2014年第1期55-60,共6页
Although insulin-like growth factor-I (IGF-I) and estrogen signaling pathways have been shown to be involved in mediating the bone anabolic response to mechanical loading, it is not known whether these two signaling... Although insulin-like growth factor-I (IGF-I) and estrogen signaling pathways have been shown to be involved in mediating the bone anabolic response to mechanical loading, it is not known whether these two signaling pathways crosstalk with each other in producing a skeletal response to mechanical loading. To test this, at 5 weeks of age, partial ovariectomy (pOVX) or a sham operation was performed on heterozygous IGF-I conditional knockout (H IGF-I KO) and control mice generated using a Cre-loxP approach. At 10 weeks of age, a 10 N axial load was applied on the right tibia of these mice for a period of 2 weeks and the left tibia was used as an internal non-non-loaded control. At the cortical site, partial estrogen loss reduced total volumetric bone mineral density (BMD) by 5% in control pOVX mice (P=0.05, one-way ANOVA), but not in the H IGF-I KO pOVX mice. At the trabecular site, bone volume/total volume (BV/TV) was reduced by 5%-6% in both control pOVX (P〈0.05) and H IGF-I KO pOVX (P=0.05) mice. Two weeks of mechanical loading caused a 7 %-8% and an 11%-13% (P〈0.05 vs. non-loaded bones) increase in cortical BMD and cortical thickness (Ct.Th), respectively, in the control sham, control pOVX and H IGF-I KO sham groups. By contrast, the magnitude of cortical BMD (4%, P=0.13) and Ct.Th (6%, P〈0.05) responses were reduced by 50% in the H IGF-I KO pOVX mice compared to the other three groups. The interaction between genotype and estrogen deficiency on the mechanical loading-induced cortical bone response was significant (P〈0.05) by two-way ANOVA. Two weeks of axial loading caused similar increases in trabecular BV/TV (13%-17%) and thickness (17%-23%) in all four groups of mice. In conclusion, partial loss of both estrogen and IGF-I significantly reduced cortical but not the trabecular bone response to mechanical loading, providing in vivo evidence of the above crosstalk in mediating the bone response to loading. 展开更多
关键词 BONE IGF estrogen crosstalk in mediating the cortical bone response to mechanical strain
下载PDF
Mechanical strain triggering flux jumps of multi-filamentary Nb_(3)Sn wires
4
作者 Qing-Yu Wang Cun Xue You-He Zhou 《Superconductivity》 2022年第4期14-21,共8页
The composite multi‐filamentary Nb_(3)Sn wire with a high critical current density is a preferred option for fabricating the superconducting magnet beyond the limit of NbTi wire(9–16 T).However,one crucial issue ste... The composite multi‐filamentary Nb_(3)Sn wire with a high critical current density is a preferred option for fabricating the superconducting magnet beyond the limit of NbTi wire(9–16 T).However,one crucial issue stems from the fact that electromagnetic force in superconducting coils is very strong,and the critical physical properties of Nb_(3)Sn,such as Jc,are more sensitive to mechanical strain than those of other possible low‐temperature superconductors.We theoretically investigated the impact of mechanical strain on the thermomagnetic instabilities such as the flux jump(FJ)and quenching of Nb_(3)Sn wire exposed to a static magnetic field and transport current.The good agreements with H formulation or H‐φformulation implemented on COMSOL software confirm the validity of our numerical simulations using home‐made codes.It is discovered that mechanical strain can trigger flux jumps even in a static magnetic field.Furthermore,the threshold value of mechanical strain to trigger the first flux jump is a monotonic function of the static magnetic field in the case of high transport currents,while it is a non‐monotonic function in the case of low transport currents.It is attributed to the fact that flux can be released by the mechanical strain,causing smooth flux penetration before triggering the flux jump.We also present the stable/unstable regions by applying mechanical strain by varying transport current,magnetic field,and working temperature,which helps in avoiding thermomagnetic instabilities while designing the superconducting magnet. 展开更多
关键词 Nb_(3)Sn wires Thermomagnetic instability Flux jump mechanical strain
原文传递
Current horizontal strain field in Chinese mainland derived from GPS data 被引量:3
5
作者 杨国华 李延兴 +2 位作者 韩月萍 胡新康 巩曰沐 《Acta Seismologica Sinica(English Edition)》 CSCD 2002年第4期351-362,共12页
The current crustal horizontal strain field is given in the paper based on the horizontal movement rates obtained from about 400 GPS stations located in Chinese mainland and its surrounding areas. The results show: a)... The current crustal horizontal strain field is given in the paper based on the horizontal movement rates obtained from about 400 GPS stations located in Chinese mainland and its surrounding areas. The results show: a) The horizontal strain in Chinese mainland is strong in the west and weak in the east and the shear strain is larger than the normal strain (absolute magnitude). The general strain magnitude is 10-8/a and in local regions is 10-7/a, but the strain distribution is not homogeneous; b) The regions with the most significant NS-trending strains are the Himalayas belt along the western segment of Chinese southern boundary, the segment of 36N~42N along the western boundary and the northern margin of Qaidam block; c) The EW-trending strain variation along the western margin is the maximum and it is characterized by the alternatively positive and negative variations from the west to the east; d) The regions with larger magnitudes of REN (NE-trending shear strain) and Rmax (maximum shear strain) are Himalayas belt, the segment of 36N~42N along the western boundary, the western part of Qaidam block, Sichuan-Yunnan (Chuan-Dian) rhombic block and the border area of Alxa, Qilian and Tarim blocks; e) The surrounding area of Qinghai-Xizang (Qingzang) block is mainly superfacial contraction and its interior is basically superfacial expansion. The area to its north is mainly superfacial contraction with the maximum magnitude along the western boundary and the minimum magnitude in the eastern part (except Yanshan tectonic zone); f) In the west of the western part, the principal compressive strain is in the SN direction and the principal tensile strain is in the EW direction, while in the eastern margin area of the western part, the principal compressive strain is proximate EW and the principal tensile strain is about SN. The principal strain direction of Chuan-Dian rhombic block has changed greatly. In the northern part, it is compression in the EW and tension in the SN, while in the southern part, it is just the opposite; g) The strain pattern in Chinese mainland might be the integration of block mode and successive deformation mode. In addition, the shear strain might be the small-scale dominant strain. Such a result might be resulted from the collision of Indian plate and the boundaries coupling, and it is also closely related to the motion of deep-seated matters and the physical nature of crustal medium. Therefore, it should be noted that since the GPS stations are not homogenous in spatial distribution, the obtained strain fields and the scales of the strain should be different. 展开更多
关键词 GPS Chinese mainland current strain field strain mechanism
下载PDF
The Mechanism of Critical Strain of Serrated Yielding in Strain Rate Domain
6
作者 符师桦 蔡玉龙 +2 位作者 杨素丽 张青川 伍小平 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第2期79-82,共4页
The mechanism of the critical strain of serrated yielding is studied via tension tests at various strain rates. Betore the critical strain, it is deduced that dislocations are not pinned at high strain rates, and disl... The mechanism of the critical strain of serrated yielding is studied via tension tests at various strain rates. Betore the critical strain, it is deduced that dislocations are not pinned at high strain rates, and dislocations at low strain rates are pinned but cannot escape. The critical strain depends on the first pinning process at high strain rates and on the first unpinning process at low strain rates. The calculated results based on the two criteria are in good consistency with the experiment. 展开更多
关键词 of IS The Mechanism of Critical strain of Serrated Yielding in strain Rate Domain that RATE HIGH
下载PDF
Creep Deformation of Mg-PSZ under Compressive Loading
7
作者 Trevor R.Finlayson George V.Franks Mitchell L.Sesso 《材料科学与工程(中英文A版)》 2023年第4期96-103,共8页
Mg-PSZ(magnesia-partially-stabilized zirconia)has been studied under compressive loading at room temperature.Mechanical strain was recorded continuously using strain gauges while the sample phase composition and micro... Mg-PSZ(magnesia-partially-stabilized zirconia)has been studied under compressive loading at room temperature.Mechanical strain was recorded continuously using strain gauges while the sample phase composition and microstructure has been recorded at regular intervals on the ENGIN-X pulsed-neutron facility at the Rutherford-Appleton Laboratory in Didcot,England.Diffraction pattern analysis has been accomplished using the GSAS II software.The observed mechanical strain is time dependent,and a correlation is established between the mechanical creep strain and the phase and microstructural changes observed.Deformation and associated microstructural changes have been observed for all applied loads but were most marked for the highest load which was-1,200 MPa.It is suggested that the ongoing deformation and microstructural changes after unloading the specimen,are on account of a stress within the sample. 展开更多
关键词 Mg-PSZ compressive loading mechanical strain neutron diffraction.
下载PDF
Anti-plane analysis of semi-infinite crack in piezoelectric strip 被引量:5
8
作者 郭俊宏 刘萍 +1 位作者 卢子兴 秦太验 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第1期75-82,共8页
Using the complex variable function method and the technique of the conformal mapping, the fracture problem of a semi-infinite crack in a piezoelectric strip is studied under the anti-plane shear stress and the in-pla... Using the complex variable function method and the technique of the conformal mapping, the fracture problem of a semi-infinite crack in a piezoelectric strip is studied under the anti-plane shear stress and the in-plane electric load. The analytic solutions of the field intensity factors and the mechanical strain energy release rate are presented under the assumption that the surface of the crack is electrically impermeable. When the height of the strip tends to infinity, the analytic solutions of an infinitely large piezoelectric solid with a semi-infinite crack are obtained. Moreover, the present results can be reduced to the well-known solutions for a purely elastic material in the absence of the electric loading. In addition, numerical examples are given to show the influences of the loaded crack length, the height of the strip, and the applied mechanical/electric loads on the mechanical strain energy release rate. 展开更多
关键词 piezoelectric strip semi-infinite crack complex variable function method field intensity factor mechanical strain energy release rate
下载PDF
Exact solutions of two semi-infinite collinear cracks in piezoelectric strip 被引量:3
9
作者 卢子兴 刘萍 郭俊宏 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第11期1399-1406,共8页
Using the complex variable function method and the conformal mapping technique, the fracture problem of two semi-infinite collinear cracks in a piezoelectric strip is studied under the anti-plane shear stress and the ... Using the complex variable function method and the conformal mapping technique, the fracture problem of two semi-infinite collinear cracks in a piezoelectric strip is studied under the anti-plane shear stress and the in-plane electric load on the partial crack surface. Analytic solutions of the field intensity factors and the mechanical strain energy release rate are derived under the assumption that the surfaces of the crack are electrically impermeable. The results can be reduced to the well-known solutions for a purely elastic material in the absence of an electric load. Moreover, when the distance between the two crack tips tends to infinity, analytic solutions of a semi-infinite crack in a piezoelectric strip can be obtained. Numerical examples are given to show the influence of the loaded crack length, the height of the strip, the distance between the two crack tips, and the applied mechanical/electric loads on the mechanical strain energy release rate. It is shown that the material is easier to fail when the distance between two crack tips becomes shorter, and the mechanical/electric loads have greater influence on the propagation of the left crack than those of the right one. 展开更多
关键词 piezoelectric strip semi-infinite collinear crack complex variable function method field intensity factor mechanical strain energy release rate
下载PDF
The role of strain in oxygen evolution reaction
10
作者 Zihang Feng Chuanlin Dai +5 位作者 Zhe Zhang Xuefei Lei Wenning Mu Rui Guo Xuanwen Liu Junhua You 《Journal of Energy Chemistry》 SCIE EI CAS 2024年第6期322-344,I0009,共24页
The oxygen evolution reaction(OER)is a crucial step in metal-air batteries and water splitting technologies,playing a significant role in the efficiency and achievable heights of these two technologies.However,the OER... The oxygen evolution reaction(OER)is a crucial step in metal-air batteries and water splitting technologies,playing a significant role in the efficiency and achievable heights of these two technologies.However,the OER is a four-step,four-electron reaction,and its slow kinetics result in high overpotentials,posing a challenge.To address this issue,numerous strategies involving modified catalysts have been proposed and proven to be highly efficient.In these strategies,the introduction of strain has been widely reported because it is generally believed to effectively regulate the electronic structure of metal sites and alter the adsorption energy of catalyst surfaces with reaction intermediates.However,strain has many other effects that are not well known,making it an important yet unexplored area.Based on this,this review provides a detailed introduction to the various roles of strain in OER.To better explain these roles,the review also presents the definition of strain and elucidates the potential mechanisms of strain in OER based on the d-band center theory and adsorption volcano plot.Additionally,the review showcases various ways of introducing strain in OER through examples reported in the latest literature,aiming to provide a comprehensive perspective for the development of strain engineering.Finally,the review analyzes the appropriate proportion of strain introduction,compares compressive and tensile strain,and examines the impact of strain on stability.And the review offers prospects for future research directions in this emerging field. 展开更多
关键词 Oxygen evolution reaction strain generation Tensile strain Compressive strain strain mechanism strain effects
下载PDF
Three Dimensional Numerical Simulation for the Driving Force of Weld Solidification Cracking 被引量:1
11
作者 ZhiboDONG YanhongWEI +1 位作者 RenpeiLIU ZujueDONG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第3期399-402,共4页
关键词 Weld metal solidification cracking mechanical strain Driving force
下载PDF
Structural self-reconstruction strategy empowering Ni-rich layered cathodes with low-strain for superior cyclabilities
12
作者 Zhouliang Tan Yunjiao Li +5 位作者 Xiaoming Xi Shijie Jiang Xiaohui Li Xingjie Shen Panpan Zhang Zhenjiang He 《Nano Research》 SCIE EI CSCD 2023年第4期4950-4960,共11页
The key to hindering the commercial application of Ni-rich layered cathode is its severe structural and interface degradation during the undesired phase transition(hexagonal to hexagonal(H2→H3)),degenerating from the... The key to hindering the commercial application of Ni-rich layered cathode is its severe structural and interface degradation during the undesired phase transition(hexagonal to hexagonal(H2→H3)),degenerating from the build-up of mechanical strain and undesired parasitic reactions.Herein,a perovskite Li_(0.35)La_(0.55)TiO_(3)(LLTO)layer is built onto Ni-rich cathodes crystal to induce layered@spinel@perovskite heterostructure to solve the root cause of capacity fade.Intensive exploration based on structure characterizations,in situ X-ray diffraction techniques,and first-principles calculations demonstrate that such a unique heterostructure not only can improve the ability of the host structure to withstand the mechanical strain but also provides fast diffusion channels for lithium ions as well as provides a protective barrier against electrolyte corrosion.Impressively,the LLTO modified LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)cathode manifests an unexpected cyclability with an extremely high-capacity retention of≈94.6%after 100 cycles,which is superior to the pristine LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)(79.8%).Furthermore,this modified electrode also shows significantly enhanced cycling stability even withstanding a high cut-off voltage of 4.6 V.This surface self-reconstruction strategy provides deep insight into the structure/interface engineering to synergistically stabilize structure stability and regulate the physicochemical properties of Ni-rich cathodes,which will also unlock a new perspective of surface interface engineering for layered cathode materials. 展开更多
关键词 Ni-rich layered oxides cathode structural self-reconstruction phase transition mechanical strain first-principal calculation
原文传递
Dynamic mechanical behavior of ultra-high strength steel 30CrMnSiNi2A at high strain rates and elevated temperatures 被引量:8
13
作者 Qiu-lin Niu Wei-wei Ming +2 位作者 Ming Chen Si-wen Tang Peng-nan Li 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第7期724-729,共6页
During high speed machining in the field of manufacture,chip formation is a severe plastic deformation process including large strain,high strain rate and high temperature.And the strain rate in high speed cutting pro... During high speed machining in the field of manufacture,chip formation is a severe plastic deformation process including large strain,high strain rate and high temperature.And the strain rate in high speed cutting process can be achieved to 105 s^(-1).30CrMnSiNi2Asteel is a kind of important high-strength low-alloy structural steel with wide application range.Obtaining the dynamic mechanical properties of30CrMnSiNi2Aunder the conditions of high strain rate and high temperature is necessary to construct the constitutive relation model for high speed machining.The dynamic compressive mechanical properties of30CrMnSiNi2Asteel were studied using split Hopkinson pressure bar(SHPB)tests at 30-700°C and3000-10000s^(-1).The stress-strain curves of 30CrMnSiNi2Asteel at different temperatures and strain rates were investigated,and the strain hardening effect and temperature effect were discussed.Experimental results show that 30CrMnSiNi2Ahas obvious temperature sensitivity at 300°C.Moreover,the flow stress decreased significantly with the increase of temperature.The strain hardening effect of the material at high strain rate is not significant with the increase of strain.The strain rate hardening effect is obvious with increasing the temperature.According to the experimental results,the established Johnson-Cook(J-C)constitutive model of 30CrMnSiNi2Asteel could be used at high strain rate and high temperature. 展开更多
关键词 30CrMnSiNi2A steel Dynamic mechanical behavior Split Hopkinson pressure bar High temperature High strain rate Ultra-high strength steel
原文传递
EXPERIMENTAL STUDY ON LUBRICATION BEHAVIOR OF DOUBLE ENVELOPING HOUK GLASSWOKM GEARING
14
作者 He Huinong,Zhou Yinsheng,Quan Yongxin,( Zhejiang, University) Wei Yunlong, Cao Xingjin, (Chongqing, University) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1996年第1期57-62,共3页
The lubrication behavior of double enveloping hourglass worm gearing is studied experimently. The effects of rotational speed of the worm and load on the formation of the fluid film between engagement tooth ... The lubrication behavior of double enveloping hourglass worm gearing is studied experimently. The effects of rotational speed of the worm and load on the formation of the fluid film between engagement tooth surfaces are investigated in detail. and working angle of this worm gearing is also analyzed. Some beneficial results are obtained。 展开更多
关键词 Double enveloping hourglass worm gearing Lubrication mechanism Working angle Tooth root strain
全文增补中
Mechanical loading induced expression of bone morphogenetic protein-2, alkaline phosphatase activity, and collagen synthesis in osteoblastic MC3T3-E1 cells 被引量:3
15
作者 LU Hong-fei MAI Zhi-hui XU Ye WANG Wei AI Hong 《Chinese Medical Journal》 SCIE CAS CSCD 2012年第22期4093-4097,共5页
Background Bone morphogenetic protein (BMP)-2, alkaline phosphatase (ALP), and collagen type I are known to play a critical role in the process of bone remodeling. However, the relationship between mechanical stra... Background Bone morphogenetic protein (BMP)-2, alkaline phosphatase (ALP), and collagen type I are known to play a critical role in the process of bone remodeling. However, the relationship between mechanical strain and the expression of BMP-2, ALP, and COL-I in osteoblasts was still unknown. The purpose of this study was to investigate the effects of different magnitudes of mechanical strain on osteoblast morphology and on the expression of BMP-2, ALP, and COL-I. Methods Osteoblast-like cells were flexed at four deformation rates (0, 6%, 12%, and 18% elongation). The expression of BMP-2 mRNA, ALP, and COL-I in osteoblast-like cells were determined by real-time quantitative reverse transcription polymerase chain reaction, respectively. The results were subjected to analysis of variance (ANOVA) using SPSS 13.0 statistical software. Results The cells changed to fusiform and grew in the direction of the applied strain after the mechanical strain was loaded. Expression level of the BMP-2, ALP, and COL-I increased magnitude-dependently with mechanical loading in the experimental groups, and the 12% elongation group had the highest expression (P 〈0.05). Conclusion Mechanical strain can induce morphological change and a magnitude-dependent increase in the expression of BMP-2, ALP, and COL-I mRNA in osteoblast-like cells, which might influence bone remodeling in orthodontic treatment. 展开更多
关键词 mechanical strain osteoblasts bone morpho enetic protein-2 alkaline phosphatase collagen type I
原文传递
Strain and illumination triggered regulations of up-conversion luminescence in Er-doped Bi_(0.5)Na_(0.5)TiO_(3)-BaTiO_(3)/Mica flexible multifunctional thin films
16
作者 Yang Zhou Rui Xiong +6 位作者 Peng Wang Xiao Wu Baisheng Sa Cong Lin Min Gao Tengfei Lin Chunlin Zhao 《Journal of Materiomics》 SCIE 2022年第3期586-595,共10页
External stimuli induced effective regulations of luminescent material are of significant interest in the development of smart optical devices.Here,by simply doping with Er^(3+) in the 0.94Bi_(0.5)Na_(0.5)TiO_(3)-0.06... External stimuli induced effective regulations of luminescent material are of significant interest in the development of smart optical devices.Here,by simply doping with Er^(3+) in the 0.94Bi_(0.5)Na_(0.5)TiO_(3)-0.06BaTiO_(3)(BNTBT)ferroelectric host,using the bendable mica substrate,and exerting mechanical strain(bending)or light illumination(via photochromic reaction),the all-inorganic,highly-transparent and flexible Er-doped BNTBT/Mica luminescent-ferroelectric thin films were designed and fabricated,displaying strain-induced dramatically elevation of up-conversion photoluminescence(PL)intensity,suppression of PL concentration quenching,outstanding endurance and durability,convenient illuminationmediated PL quenching.And the strain-induced structural changes and local lattice distortions of the thin films were further explored through theoretical calculations and Raman measurement.Our results can supply the guidance of designing other luminescent-ferroelectric materials with controlled PL properties via easy mechanical/photo stimuli for expanding the application of multifunctional wearable memory devices. 展开更多
关键词 Luminescent-ferroelectrics Flexibility mechanical strain Up-conversion photoluminescence PHOTOCHROMIC
原文传递
Strain Hardening Associated with Dislocation,Deformation Twinning,and Dynamic Strain Aging in Fe–20Mn–1.3C–(3Cu) TWIP Steels 被引量:2
17
作者 Lingyan Zhao Dingyi Zhu +2 位作者 Longlong Liu Zhenming Hu Mingjie Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第4期601-608,共8页
The effects of Cu on stacking fault energy,dislocation slip,mechanical twinning,and strain hardening in Fe–20Mn–1.3C twinning-induced plasticity(TWIP) steels were systematically investigated.The stacking fault ene... The effects of Cu on stacking fault energy,dislocation slip,mechanical twinning,and strain hardening in Fe–20Mn–1.3C twinning-induced plasticity(TWIP) steels were systematically investigated.The stacking fault energy was raised with an average slope of 2 mJ/m2 per 1 wt% Cu.The Fe–20Mn–1.3C–3Cu steel exhibited superior tensile properties,with the ultimate tensile strength reached at 2.27 GPa and elongation up to 96.9% owing to the high strain hardening that occurred.To examine the mechanism of this high strain hardening,dislocation density determination by XRD was calculated.The dislocation density increased with the increasing strain,and the addition of Cu resulted in a decrease in the dislocation density.A comparison of the strain-hardening behavior of Fe–20Mn–1.3C and Fe–20Mn–1.3C–3Cu TWIP steels was made in terms of modified Crussard–Jaoul(C–J) analysis and microstructural observations.Especially at low strains,the contributions of all the relevant deformation mechanisms—slip,twinning,and dynamic strain aging—were quantitatively evaluated.The analysis revealed that the dislocation storage was the leading factor to the increase of the strain hardening,while dynamic strain aging was a minor contributor to strain hardening.Twinning,which interacted with the matrix,acted as an effective barrier to dislocation motion. 展开更多
关键词 Twinning-induced plasticity(TWIP) strain hardening mechanical twinning Dislocation density Dynamic strain aging
原文传递
Effect of tempering temperature on strain hardening exponent and flow stress curve of 1000MPa grade steel for construction machinery 被引量:5
18
作者 Yang Yun Qing-wu Cai +1 位作者 Bao-sheng Xie Shuang Li 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第9期950-956,共7页
To study the effect of tempering temperature on strain hardening exponent and flow stress curve,one kind of 1000 MPa grade low carbon bainitic steel for construction machinery was designed,and the standard uniaxial te... To study the effect of tempering temperature on strain hardening exponent and flow stress curve,one kind of 1000 MPa grade low carbon bainitic steel for construction machinery was designed,and the standard uniaxial tensile tests were conducted at room temperature.A new flow stress model,which could predict the flow behavior of the tested steels at different tempering temperatures more efficiently,was established.The relationship between mobile dislocation density and strain hardening exponent was discussed based on the dislocation-stress relation.Arrhenius equation and an inverse proportional function were adopted to describe the mobile dislocation,and two mathematical models were established to describe the relationship between tempering temperature and strain hardening exponent.Nonlinear regression analysis was applied to the Arrhenius type model,hence,the activation energy was determined to be 37.6kJ/mol.Moreover,the square of correlation coefficient was 0.985,which indicated a high reliability between the fitted curve and experimental data.By comparison with the Arrhenius type curve,the general trend of the inverse proportional fitting curve was coincided with the experimental data points except of some fitting errors.Thus,the Arrhenius type model can be adopted to predict the strain hardening exponent at different tempering temperatures. 展开更多
关键词 Tempering temperature Flow stress curve strain hardening exponent Microscopic mechanism Mathematical model
原文传递
Microstructure and Strain Hardening of a Friction Stir Welded High-Strength Al–Zn–Mg Alloy 被引量:1
19
作者 A.H.Feng D.L.Chen +2 位作者 Z.Y.Ma W.Y.Ma R.J.Song 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第4期723-729,共7页
Microstructural evolution and strain hardening behavior of a friction stir welded(FSWed) high-strength7075Al-T651 alloy were evaluated.The nugget zone was observed to consist of fine and equiaxed recrystallized grai... Microstructural evolution and strain hardening behavior of a friction stir welded(FSWed) high-strength7075Al-T651 alloy were evaluated.The nugget zone was observed to consist of fine and equiaxed recrystallized grains with a low dislocation density and free of original precipitates,but containing uniformly distributed dispersoids.The strength,joint efficiency,and ductility of the FSWed joints increased with increasing welding speed.A joint efficiency of *91% was achieved at a welding speed of 400 mm/min and rotational rate of 800 r/min,while the ductility remained basically the same as that of the base metal.There was no obvious strain rate sensitivity observed in both base metal and welded joints.While both the base metal and FSWed joints exhibited stage III and IV hardening characteristics,the hardening capacity,strain hardening exponent,and strain hardening rate all increased after friction stir welding. 展开更多
关键词 Aluminum alloy Friction stir welding mechanical properties strain hardening
原文传递
Damage characteristics and constitutive modeling of the 2D C/Si C composite: Part I – Experiment and analysis 被引量:10
20
作者 Li Jun Jiao Guiqiong +2 位作者 Wang Bo Yang Chengpeng Wang Gang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第6期1586-1597,共12页
This paper reports an experimental investigation on the macroscopic mechanical behaviors and damage mechanisms of the plain-woven(2D) C/Si C composite under in-plane on- and offaxis loading conditions. Specimens wit... This paper reports an experimental investigation on the macroscopic mechanical behaviors and damage mechanisms of the plain-woven(2D) C/Si C composite under in-plane on- and offaxis loading conditions. Specimens with 15, 30, and 45 off-axis angles were prepared and tested under monotonic and incremental cyclic tension and compression loads. The obtained results were compared with those of uniaxial tension, compression, and shear specimens. The relationships between the damage modes and the stress state were analyzed based on scanning electronic microscopy(SEM) observations and acoustic emission(AE) data. The test results reveal the remarkable axial anisotropy and unilateral behavior of the material. The off-axis tension test results show that the material is fiber-dominant and the evolution rate of damage and inelastic strain is accelerated under the corresponding combined biaxial tension and shear loads. Due to the damage impediment effect of compression stress, compression specimens show higher mechanical properties and lower damage evolution rates than tension specimens with the same off-axis angle. Under cyclic tension–compression loadings, both on-axis and off-axis specimens exhibit progressive damage deactivation behaviors in the compression range, but with different deactivation rates. 展开更多
关键词 Ceramic matrix composites Damage Inelastic strain mechanical testing Strength
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部