To solve the disposal problems of solid wastes, dehydrated sewage sludge and Yellow River sediments were tested as components for production of ultra-lightweight ceramsite. The effects of Yellow River sediments additi...To solve the disposal problems of solid wastes, dehydrated sewage sludge and Yellow River sediments were tested as components for production of ultra-lightweight ceramsite. The effects of Yellow River sediments addition on the characteristics of ceramsite were investigated. Ceramsite with different Yellow River sediments additions was characterized using thermal analysis, X-ray diffraction, morphological structures analyses, pore size distributions and porosity analyses. Chemical components, especially ratios of Si O2 + Al2O3/Flux, were used to explain the glassy shell formation, physical properties and pores distribution of ultralightweight ceramsite; physical forces for instance expansion force and frictional resistance which combined with Si O2 + Al2O3/Flux ratios were used to explain the bloating mechanism. Results showed that the maximum addition of Yellow River sediments for making ultra-lightweight ceramsite was 35%. Macropores(between 0.226 μm and 0.554 μm) of ultra-lightweight ceramsite were dominant in the pore structures of ultra-lightweight ceramsite and its porosity was up to 67.7%. Physical force of expansion force was constant with the variation of Yellow River sediments content and physical force of frictional resistance was decreased with the increase of Yellow River sediments addition. The relationship between expansion and frictional resistance could determine the expansion rate of ceramsite. Larger pores inside the ceramsite bodies could be obtained as Yellow River sediments additions ranged from 10% to 30%. Ceramsite with higher Yellow River sediments additions of 40%(Si O2 + Al2O3/Flux ratios 4.25) became denser and have lower porosity. Crystal components analysis proved that the sintering process made some components of raw materials transfer into other crystals having better thermostability.展开更多
The Yellow River has a vast catchment area and historically it is the mother river of the Chinese nation. Now it serves as one of the main theatres for the on-going national campaign to develop China's western... The Yellow River has a vast catchment area and historically it is the mother river of the Chinese nation. Now it serves as one of the main theatres for the on-going national campaign to develop China's western hinterland.……展开更多
Yellow stem borer(YSB),Scir-pophaga incertulas(Walker)has be-come the main rice insect pest onceagain along the Changjiang Riversince 1990s.Unfortunately,no ricevariety with resistance to YSB hasbeen reported so far.J...Yellow stem borer(YSB),Scir-pophaga incertulas(Walker)has be-come the main rice insect pest onceagain along the Changjiang Riversince 1990s.Unfortunately,no ricevariety with resistance to YSB hasbeen reported so far.Japonica Zhen-dao 2 with moderate resistance toYSB was found.In 10 rice vari-eties with different resistance levels,YSB individuals showed distinct de-velopmental rates,and the asyn-chronous development even occurredin the same rice variety.In this展开更多
基金Funded by the Doctoral Program of Higher Education of China(No.20100131110005)
文摘To solve the disposal problems of solid wastes, dehydrated sewage sludge and Yellow River sediments were tested as components for production of ultra-lightweight ceramsite. The effects of Yellow River sediments addition on the characteristics of ceramsite were investigated. Ceramsite with different Yellow River sediments additions was characterized using thermal analysis, X-ray diffraction, morphological structures analyses, pore size distributions and porosity analyses. Chemical components, especially ratios of Si O2 + Al2O3/Flux, were used to explain the glassy shell formation, physical properties and pores distribution of ultralightweight ceramsite; physical forces for instance expansion force and frictional resistance which combined with Si O2 + Al2O3/Flux ratios were used to explain the bloating mechanism. Results showed that the maximum addition of Yellow River sediments for making ultra-lightweight ceramsite was 35%. Macropores(between 0.226 μm and 0.554 μm) of ultra-lightweight ceramsite were dominant in the pore structures of ultra-lightweight ceramsite and its porosity was up to 67.7%. Physical force of expansion force was constant with the variation of Yellow River sediments content and physical force of frictional resistance was decreased with the increase of Yellow River sediments addition. The relationship between expansion and frictional resistance could determine the expansion rate of ceramsite. Larger pores inside the ceramsite bodies could be obtained as Yellow River sediments additions ranged from 10% to 30%. Ceramsite with higher Yellow River sediments additions of 40%(Si O2 + Al2O3/Flux ratios 4.25) became denser and have lower porosity. Crystal components analysis proved that the sintering process made some components of raw materials transfer into other crystals having better thermostability.
文摘 The Yellow River has a vast catchment area and historically it is the mother river of the Chinese nation. Now it serves as one of the main theatres for the on-going national campaign to develop China's western hinterland.……
文摘Yellow stem borer(YSB),Scir-pophaga incertulas(Walker)has be-come the main rice insect pest onceagain along the Changjiang Riversince 1990s.Unfortunately,no ricevariety with resistance to YSB hasbeen reported so far.Japonica Zhen-dao 2 with moderate resistance toYSB was found.In 10 rice vari-eties with different resistance levels,YSB individuals showed distinct de-velopmental rates,and the asyn-chronous development even occurredin the same rice variety.In this