We are delighted to serve as guest editors for this special issue in the Journal of Rock Mechanics and Geotechnical Engineering.The purpose of this special issue is dedicated to gathering the latest research work on M...We are delighted to serve as guest editors for this special issue in the Journal of Rock Mechanics and Geotechnical Engineering.The purpose of this special issue is dedicated to gathering the latest research work on Multiscale&Multifield Coupling in Geomechanics,where we delve into the intricate interplay of various fields and scales that govern the behavior of geomaterials.In total,30 manuscripts from USA,China,UK,Germany,Canada,India and United Arab Emirates are selected to be included in this issue.展开更多
In the quest for a sustainable and abundant energy source, nuclear fusion technology stands as a beacon of hope. This study introduces a groundbreaking quantum mechanically effective induction system designed for magn...In the quest for a sustainable and abundant energy source, nuclear fusion technology stands as a beacon of hope. This study introduces a groundbreaking quantum mechanically effective induction system designed for magnetic plasma confinement within fusion reactors. The pursuit of clean energy, essential to combat climate change, hinges on the ability to harness nuclear fusion efficiently. Traditional approaches have faced challenges in plasma stability and energy efficiency. The novel induction system presented here not only addresses these issues but also transforms fusion reactors into integrated construction systems. This innovation promises compact fusion reactors, marking a significant step toward a clean and limitless energy future, free from the constraints of traditional power sources. This revolutionary quantum induction system redefines plasma confinement in fusion reactors, unlocking clean, compact, and efficient energy production.展开更多
A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced duri...A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced during the tunnel construction.To mitigate this problem,a support system was designed incorporating negative Poisson ratio(NPR)anchor cables with negative Poisson ratio effect.Physical model experiments,field experiments,and numerical simulation experiments were conducted to investigate the compensation mechanical behavior of NPR anchor cables.The large deformations of soft rocks in the Daliangshan Tunnel are caused by a high ground stress,a high degree of joint fracture development,and a high degree of surrounding rock fragmentation.A compensation mechanics support system combining long and short NPR anchor cables was suggested to provide sufficient counter-support force(approximately 350 kN)for the surrounding rock inside the tunnel.Comparing the NPR anchor cable support system with the original support system used in the Daliangshan tunnel showed that an NPR anchor cable support system,combining cables of 6.3 m and 10.3 m in length,effectively prevented convergence of surrounding rock deformation,and the integrated settlement convergence value remained below 300 mm.This study provides an effective scientific basis for resolving large deformation problems in deeply buried soft rocks in western transverse mountain areas.展开更多
Hydraulic fracturing is a mature and effectivemethod for deep oil and gas production,which provides a foundation for deep oil and gas production.One of the key aspects of implementing hydraulic fracturing technology l...Hydraulic fracturing is a mature and effectivemethod for deep oil and gas production,which provides a foundation for deep oil and gas production.One of the key aspects of implementing hydraulic fracturing technology lies in understanding mechanics response characteristics of rocks in deep reservoirs under complex stress conditions.In this work,based on outcrop core samples,high-stress triaxial compression tests were designed to simulate the rock mechanics behavior of deep reservoirs in Bozhong Sag.Additionally,this study analyzes the deformation and damage law for rock under different stress conditions.Wherein,with a particular focus on combining energy dissipation theory to further understand damage law for deep reservoirs.The experimental results show that regardless of stress conditions,the process of deformation/failure of deep-seated reservoirs goes through five stages:Fracture compaction,newfracture formation,stable fracture expansion,unstable fracture expansion,and post-peak residual deformation.Under different stress conditions,the energy change laws of specimens are similar.The energy dissipation process of rocks corresponds closely to the trend of deformation-failure curve,then displays distinctive stage characteristics.Wherein,in stage of rock fracture compaction,the input energy curve is approximately coincident with the elastic strain energy curve,while the dissipation energy curve remains near zero.With the increase of strain,the growth rate of elastic strain energy increases gradually,but with the deformation entering the crack propagation stage,the growth rate of elastic strain energy slows down and the dissipation energy increases gradually.Finally,in the post-peak stage,rock fracture releases a lot of energy,which leads to the sharp decline of elastic strain energy curve.In addition,the introduction of damage variable D quantifies the analysis of the extent of failure for rocks.During the process of increasing strain,rock damage exhibits nonlinear growth with increasing stress.展开更多
In clinical practice, dentists sometimes encounter phenomena that cannot be explained by modern western medical concepts;for example, the patient’s medical symptoms improve by bringing medicines or dentures close to ...In clinical practice, dentists sometimes encounter phenomena that cannot be explained by modern western medical concepts;for example, the patient’s medical symptoms improve by bringing medicines or dentures close to the body. Although it seems difficult to completely elucidate the mechanism through modern western medicine, it can be explained using quantum mechanics. The quantum, the smallest unit of matter composition, exhibits wave-particle duality. The fact that symptoms can be improved simply by bringing dentures or medicines closer to the body indicates that the waves emitted by dentures or medicines interfere with the pathological waves emitted by the pathological site. Thus, the pathological waves are deformed and lead to a change in symptoms. In this way, quantum theory can explain phenomena that are difficult to elucidate in conventional medicine, which are encountered in clinical practice. So far, the author has presented a case of difficulty in raising the upper limb where the symptoms improved without the need for dentures in the mouth by adjusting the dentures outside the mouth. This time, the author would like to introduce a case which the patient’s knee pain improved by adjusting the dentures outside the mouth.展开更多
Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction a...Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction and expansion forces of space time. According to this, the space time with Planck diameter is a flat space time. This is the only diameter of space time that can be used as signal transformation in special relativity. This space time diameter defines the fundamental force which belongs to that space time. In quantum mechanics, this space time diameter is only the quantum of space which belongs to that particular fundamental force. Einstein’s general relativity equation and Planck parameters of quantum mechanics have been written in terms of equations containing a constant “K”, thus found a new equation for transformation of general relativity space time in to quantum space time. In this process of synchronization, there is a possibility of a new fundamental force between electromagnetic and gravitational forces with Planck length as its space time diameter. It is proposed that dark matter is that fundamental force carrying particle. By grand unification equation with space-time diameter, we found a coupling constant as per standard model “α<sub>s</sub>” for that fundamental force is 1.08 × 10<sup>-23</sup>. Its energy calculated as 113 MeV. A group of experimental scientists reported the energy of dark matter particle as 17 MeV. Thorough review may advance science further.展开更多
The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurat...The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurate andunstable when applied. Therefore, developing new elements within the framework of the generalized variationalprinciple is of great significance. In this paper, an 8-node plane hybrid finite element with 15 parameters (PHQ8-15β) is developed for structural mechanics problems based on the Hellinger-Reissner variational principle.According to the design principle of Pian, 15 unknown parameters are adopted in the selection of stress modes toavoid the zero energy modes.Meanwhile, the stress functions within each element satisfy both the equilibrium andthe compatibility relations of plane stress problems. Subsequently, numerical examples are presented to illustrate theeffectiveness and robustness of the proposed finite element. Numerical results show that various common lockingbehaviors of plane elements can be overcome. The PH-Q8-15β element has excellent performance in all benchmarkproblems, especially for structures with varying cross sections. Furthermore, in bending problems, the reasonablemesh shape of the new element for curved edge structures is analyzed in detail, which can be a useful means toimprove numerical accuracy.展开更多
The SI system of units in rotational mechanics yields correct numerical results, but it produces physically incorrect units of measure in many cases. SI units also violate the principle of general covariance—the gene...The SI system of units in rotational mechanics yields correct numerical results, but it produces physically incorrect units of measure in many cases. SI units also violate the principle of general covariance—the general rule for defining continuous coordinates and units in mathematics and mathematical physics. After 30+ years of wrestling with these problems, the ultimate authority on units of measure has declared that Newton–meter and Joule are not equivalent in rotational mechanics, as they are in the rest of physics. This article proposes a simple modification to SI units called “Nonstandard International units” (“NI units”) until a better name is agreed upon. NI units yield correct numerical results and physically correct units of measure, and they satisfy the principle of general covariance. The main obstacle to the adoption of NI units is the consensus among users that the radius of rotation should have the unit meter because the radius can be measured with a ruler. NI units assigned to radius should have units meter/radian because the radius is a conversion factor between angular size and circumferential length, as in arclength = rθ. To manage the social consensus behind SI units, the author recommends retaining SI units as they are, and informing users who want correct units that NI units solve the technical problems of SI units.展开更多
Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macrosc...Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macroscopic mechanical response of magnesium alloys under cyclic loading conditions, we employed a crystal plasticity model to analyze the stress-strain curves, specific crystal plane diffraction intensities, and the temporal evolution of various microscopic deformation mechanisms and twinning volume fractions for an extruded magnesium alloy, AXM10304, containing coherent precipitates. The research findings indicate that precipitation does not fundamentally alter the microscopic mechanisms of this alloy. However, it hinders twinning during the compression stage, mildly promotes detwinning during the tension stage, and enhances tension secondary hardening by elevating the difficulty of activation of the prismatic slip.展开更多
This paper explores the integration of simulation technology in Engineering Mechanics(EM)teaching in vocational colleges.A case study was conducted using the tensile test as an example,and digital resources,such as co...This paper explores the integration of simulation technology in Engineering Mechanics(EM)teaching in vocational colleges.A case study was conducted using the tensile test as an example,and digital resources,such as colored Mises stress nephograms,were obtained.These resources were integrated into the original curriculum to conduct teaching experiments.The results show that the use of digital resources significantly improved the quality of teaching in EM.The integration of simulation technology in EM teaching provides a promising direction for the improvement of vocational education and the cultivation of high-quality skilled talents.The development and application of more simulation-based teaching cases should be studied by scholars.展开更多
This paper takes the assessment and evaluation of computational mechanics course as the background,and constructs a diversified course evaluation system that is student-centered and integrates both quantitative and qu...This paper takes the assessment and evaluation of computational mechanics course as the background,and constructs a diversified course evaluation system that is student-centered and integrates both quantitative and qualitative evaluation methods.The system not only pays attention to students’practical operation and theoretical knowledge mastery but also puts special emphasis on the cultivation of students’innovative abilities.In order to realize a comprehensive and objective evaluation,the assessment and evaluation method of the entropy weight model combining TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)multi-attribute decision analysis and entropy weight theory is adopted,and its validity and practicability are verified through example analysis.This method can not only comprehensively and objectively evaluate students’learning outcomes,but also provide a scientific decision-making basis for curriculum teaching reform.The implementation of this diversified course evaluation system can better reflect the comprehensive ability of students and promote the continuous improvement of teaching quality.展开更多
文摘We are delighted to serve as guest editors for this special issue in the Journal of Rock Mechanics and Geotechnical Engineering.The purpose of this special issue is dedicated to gathering the latest research work on Multiscale&Multifield Coupling in Geomechanics,where we delve into the intricate interplay of various fields and scales that govern the behavior of geomaterials.In total,30 manuscripts from USA,China,UK,Germany,Canada,India and United Arab Emirates are selected to be included in this issue.
文摘In the quest for a sustainable and abundant energy source, nuclear fusion technology stands as a beacon of hope. This study introduces a groundbreaking quantum mechanically effective induction system designed for magnetic plasma confinement within fusion reactors. The pursuit of clean energy, essential to combat climate change, hinges on the ability to harness nuclear fusion efficiently. Traditional approaches have faced challenges in plasma stability and energy efficiency. The novel induction system presented here not only addresses these issues but also transforms fusion reactors into integrated construction systems. This innovation promises compact fusion reactors, marking a significant step toward a clean and limitless energy future, free from the constraints of traditional power sources. This revolutionary quantum induction system redefines plasma confinement in fusion reactors, unlocking clean, compact, and efficient energy production.
基金Project(41941018)supported by the National Natural Science Foundation of China for the Special Project FundingProject(22-JKCF-08)supported by the Study on in-situ Stress Database and 3D in-situ Stress Inversion Technology of Highway Tunnel in Shanxi Province,China+1 种基金Project(2022-JKKJ-6)supported by the Study on Disaster Mechanism and NPR Anchor Cable Prevention and Control of Coal Mining Caving Subsidence in Operating Tunnel in Mountainous Area,ChinaProject(BBJ2024032)supported by the Fundamental Research Funds for the Central Universities(PhD Top Innovative Talents Fund of CUMTB),China。
文摘A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced during the tunnel construction.To mitigate this problem,a support system was designed incorporating negative Poisson ratio(NPR)anchor cables with negative Poisson ratio effect.Physical model experiments,field experiments,and numerical simulation experiments were conducted to investigate the compensation mechanical behavior of NPR anchor cables.The large deformations of soft rocks in the Daliangshan Tunnel are caused by a high ground stress,a high degree of joint fracture development,and a high degree of surrounding rock fragmentation.A compensation mechanics support system combining long and short NPR anchor cables was suggested to provide sufficient counter-support force(approximately 350 kN)for the surrounding rock inside the tunnel.Comparing the NPR anchor cable support system with the original support system used in the Daliangshan tunnel showed that an NPR anchor cable support system,combining cables of 6.3 m and 10.3 m in length,effectively prevented convergence of surrounding rock deformation,and the integrated settlement convergence value remained below 300 mm.This study provides an effective scientific basis for resolving large deformation problems in deeply buried soft rocks in western transverse mountain areas.
基金funded by the Scientific and Technological Service Project of CNOOC Tianjin Branch“Research on Rock Mechanical Response Characteristics and Fracture Extension Mechanism of Metamorphic Reservoirs in the Southwest Ring of the Archaean Group in the Bozhong Sag,Bohai Bay Basin”.CCL2022TJX0NST1189.
文摘Hydraulic fracturing is a mature and effectivemethod for deep oil and gas production,which provides a foundation for deep oil and gas production.One of the key aspects of implementing hydraulic fracturing technology lies in understanding mechanics response characteristics of rocks in deep reservoirs under complex stress conditions.In this work,based on outcrop core samples,high-stress triaxial compression tests were designed to simulate the rock mechanics behavior of deep reservoirs in Bozhong Sag.Additionally,this study analyzes the deformation and damage law for rock under different stress conditions.Wherein,with a particular focus on combining energy dissipation theory to further understand damage law for deep reservoirs.The experimental results show that regardless of stress conditions,the process of deformation/failure of deep-seated reservoirs goes through five stages:Fracture compaction,newfracture formation,stable fracture expansion,unstable fracture expansion,and post-peak residual deformation.Under different stress conditions,the energy change laws of specimens are similar.The energy dissipation process of rocks corresponds closely to the trend of deformation-failure curve,then displays distinctive stage characteristics.Wherein,in stage of rock fracture compaction,the input energy curve is approximately coincident with the elastic strain energy curve,while the dissipation energy curve remains near zero.With the increase of strain,the growth rate of elastic strain energy increases gradually,but with the deformation entering the crack propagation stage,the growth rate of elastic strain energy slows down and the dissipation energy increases gradually.Finally,in the post-peak stage,rock fracture releases a lot of energy,which leads to the sharp decline of elastic strain energy curve.In addition,the introduction of damage variable D quantifies the analysis of the extent of failure for rocks.During the process of increasing strain,rock damage exhibits nonlinear growth with increasing stress.
文摘In clinical practice, dentists sometimes encounter phenomena that cannot be explained by modern western medical concepts;for example, the patient’s medical symptoms improve by bringing medicines or dentures close to the body. Although it seems difficult to completely elucidate the mechanism through modern western medicine, it can be explained using quantum mechanics. The quantum, the smallest unit of matter composition, exhibits wave-particle duality. The fact that symptoms can be improved simply by bringing dentures or medicines closer to the body indicates that the waves emitted by dentures or medicines interfere with the pathological waves emitted by the pathological site. Thus, the pathological waves are deformed and lead to a change in symptoms. In this way, quantum theory can explain phenomena that are difficult to elucidate in conventional medicine, which are encountered in clinical practice. So far, the author has presented a case of difficulty in raising the upper limb where the symptoms improved without the need for dentures in the mouth by adjusting the dentures outside the mouth. This time, the author would like to introduce a case which the patient’s knee pain improved by adjusting the dentures outside the mouth.
文摘Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction and expansion forces of space time. According to this, the space time with Planck diameter is a flat space time. This is the only diameter of space time that can be used as signal transformation in special relativity. This space time diameter defines the fundamental force which belongs to that space time. In quantum mechanics, this space time diameter is only the quantum of space which belongs to that particular fundamental force. Einstein’s general relativity equation and Planck parameters of quantum mechanics have been written in terms of equations containing a constant “K”, thus found a new equation for transformation of general relativity space time in to quantum space time. In this process of synchronization, there is a possibility of a new fundamental force between electromagnetic and gravitational forces with Planck length as its space time diameter. It is proposed that dark matter is that fundamental force carrying particle. By grand unification equation with space-time diameter, we found a coupling constant as per standard model “α<sub>s</sub>” for that fundamental force is 1.08 × 10<sup>-23</sup>. Its energy calculated as 113 MeV. A group of experimental scientists reported the energy of dark matter particle as 17 MeV. Thorough review may advance science further.
基金the National Natural Science Foundation of China(No.11572210).
文摘The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurate andunstable when applied. Therefore, developing new elements within the framework of the generalized variationalprinciple is of great significance. In this paper, an 8-node plane hybrid finite element with 15 parameters (PHQ8-15β) is developed for structural mechanics problems based on the Hellinger-Reissner variational principle.According to the design principle of Pian, 15 unknown parameters are adopted in the selection of stress modes toavoid the zero energy modes.Meanwhile, the stress functions within each element satisfy both the equilibrium andthe compatibility relations of plane stress problems. Subsequently, numerical examples are presented to illustrate theeffectiveness and robustness of the proposed finite element. Numerical results show that various common lockingbehaviors of plane elements can be overcome. The PH-Q8-15β element has excellent performance in all benchmarkproblems, especially for structures with varying cross sections. Furthermore, in bending problems, the reasonablemesh shape of the new element for curved edge structures is analyzed in detail, which can be a useful means toimprove numerical accuracy.
文摘The SI system of units in rotational mechanics yields correct numerical results, but it produces physically incorrect units of measure in many cases. SI units also violate the principle of general covariance—the general rule for defining continuous coordinates and units in mathematics and mathematical physics. After 30+ years of wrestling with these problems, the ultimate authority on units of measure has declared that Newton–meter and Joule are not equivalent in rotational mechanics, as they are in the rest of physics. This article proposes a simple modification to SI units called “Nonstandard International units” (“NI units”) until a better name is agreed upon. NI units yield correct numerical results and physically correct units of measure, and they satisfy the principle of general covariance. The main obstacle to the adoption of NI units is the consensus among users that the radius of rotation should have the unit meter because the radius can be measured with a ruler. NI units assigned to radius should have units meter/radian because the radius is a conversion factor between angular size and circumferential length, as in arclength = rθ. To manage the social consensus behind SI units, the author recommends retaining SI units as they are, and informing users who want correct units that NI units solve the technical problems of SI units.
文摘Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macroscopic mechanical response of magnesium alloys under cyclic loading conditions, we employed a crystal plasticity model to analyze the stress-strain curves, specific crystal plane diffraction intensities, and the temporal evolution of various microscopic deformation mechanisms and twinning volume fractions for an extruded magnesium alloy, AXM10304, containing coherent precipitates. The research findings indicate that precipitation does not fundamentally alter the microscopic mechanisms of this alloy. However, it hinders twinning during the compression stage, mildly promotes detwinning during the tension stage, and enhances tension secondary hardening by elevating the difficulty of activation of the prismatic slip.
基金Science and Technology Key Project of Beijing Polytechnic(Project number:2024X008-KXZ)。
文摘This paper explores the integration of simulation technology in Engineering Mechanics(EM)teaching in vocational colleges.A case study was conducted using the tensile test as an example,and digital resources,such as colored Mises stress nephograms,were obtained.These resources were integrated into the original curriculum to conduct teaching experiments.The results show that the use of digital resources significantly improved the quality of teaching in EM.The integration of simulation technology in EM teaching provides a promising direction for the improvement of vocational education and the cultivation of high-quality skilled talents.The development and application of more simulation-based teaching cases should be studied by scholars.
基金2024 Key Project of Teaching Reform Research and Practice in Higher Education in Henan Province“Exploration and Practice of Training Model for Outstanding Students in Basic Mechanics Discipline”(2024SJGLX094)Henan Province“Mechanics+X”Basic Discipline Outstanding Student Training Base2024 Research and Practice Project of Higher Education Teaching Reform in Henan University of Science and Technology“Optimization and Practice of Ability-Oriented Teaching Mode for Computational Mechanics Course:A New Exploration in Cultivating Practical Simulation Engineers”(2024BK074)。
文摘This paper takes the assessment and evaluation of computational mechanics course as the background,and constructs a diversified course evaluation system that is student-centered and integrates both quantitative and qualitative evaluation methods.The system not only pays attention to students’practical operation and theoretical knowledge mastery but also puts special emphasis on the cultivation of students’innovative abilities.In order to realize a comprehensive and objective evaluation,the assessment and evaluation method of the entropy weight model combining TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)multi-attribute decision analysis and entropy weight theory is adopted,and its validity and practicability are verified through example analysis.This method can not only comprehensively and objectively evaluate students’learning outcomes,but also provide a scientific decision-making basis for curriculum teaching reform.The implementation of this diversified course evaluation system can better reflect the comprehensive ability of students and promote the continuous improvement of teaching quality.