1 Introduction Physical and numerical models are constructed to investigate the evolution and mechanism of salt migration driven by tectonic processes.In recent years,we have designed and ran series of models to simul...1 Introduction Physical and numerical models are constructed to investigate the evolution and mechanism of salt migration driven by tectonic processes.In recent years,we have designed and ran series of models to simulate salt展开更多
Based on the actual data collected from the tight sandstone development zone, correlation analysis using theSpearman method was conducted to determine the main factors influencing the gas production rate of tightsands...Based on the actual data collected from the tight sandstone development zone, correlation analysis using theSpearman method was conducted to determine the main factors influencing the gas production rate of tightsandstone fracturing. An integrated model combining geological engineering and numerical simulation of fracturepropagation and production was completed. Based on data analysis, the hydraulic fracture parameters wereoptimized to develop a differentiated fracturing treatment adjustment plan. The results indicate that the influenceof geological and engineering factors in the X1 and X2 development zones in the study area differs significantly.Therefore, it is challenging to adopt a uniform development strategy to achieve rapid production increase. Thedata analysis reveals that the variation in gas production rate is primarily affected by the reservoir thickness andpermeability parameters as geological factors. On the other hand, the amount of treatment fluid and proppantaddition significantly impact the gas production rate as engineering factors. Among these factors, the influence ofgeological factors is more pronounced in block X1. Therefore, the main focus should be on further optimizing thefracturing interval and adjusting the geological development well location. Given the existing well location, thereis limited potential for further optimizing fracture parameters to increase production. For block X2, the fracturingparameters should be optimized. Data screening was conducted to identify outliers in the entire dataset, and adata-driven fracturing parameter optimization method was employed to determine the basic adjustment directionfor reservoir stimulation in the target block. This approach provides insights into the influence of geological,stimulation, and completion parameters on gas production rate. Consequently, the subsequent fracturing parameteroptimization design can significantly reduce the modeling and simulation workload and guide field operations toimprove and optimize hydraulic fracturing efficiency.展开更多
This study employed multispectral techniques to evaluate fulvic acid(FA)compositional characteristic and elucidate its biodegradation mechanisms during partial nitritation(PN)process.Results showed that FA removal eff...This study employed multispectral techniques to evaluate fulvic acid(FA)compositional characteristic and elucidate its biodegradation mechanisms during partial nitritation(PN)process.Results showed that FA removal efficiency(FRE)decreased from 90.22 to 23.11%when FA concentrations in the reactor were increased from 0 to 162.30 mg/L,and that molecular size,degree of aromatization and humification of the effluent FA macromolecules all increased after treatment.Microbial population analysis indicated that the proliferation of the Comamonas,OLB12 and Thauera exhibit high FA utilization capacity in lower concentrations(<50.59 mg/L),promoting the degradation and removal of macromolecular FA.In addition,the sustained increase in external FA may decrease the abundance of above functional microorganisms,resulting in a rapid drop in FRE.Furthermore,from the genetic perspective,the elevated FA levels restricted carbohydrate(ko00620,ko00010 and ko00020)and nitrogen(HAO,AMO,NIR and NOR)metabolism-related pathways,thereby impeding FA removal and total nitrogen loss associated with N_(2)O emissions.展开更多
Highly supersaturated nanocrystalline fcc Fe60Cu40 alloy has been prepared by mechanical alloying of elemental powders. The phase transformation is monitored by X-ray diffraction (XRD),Mossbauer spectroscopy and exten...Highly supersaturated nanocrystalline fcc Fe60Cu40 alloy has been prepared by mechanical alloying of elemental powders. The phase transformation is monitored by X-ray diffraction (XRD),Mossbauer spectroscopy and extended X-ray absorption fine structure (EXAFS). The powder obtained after milling is of single fcc structure with grain size of nanometer order. The Mossbauer spectra of the milled powder can be fitted by two subspectra whose hyperfine magnetic fields are 16 MA/m and 20 MA/m while that of pure Fe disappeared. EXAFS results show that the radial structure function (RSF) of Fe K-edge changed drastically and finally became similar to that of reference Cu K-edge, while that of Cu K-edge nearly keeps unchanged in the process of milling. These imply that bcc Fe really transforms to fcc structure and alloying between Fe and Cu occurs truly on an atomic scale. EXAFS results indicate that iron atoms tend to segregate at the boundaries and Cu atoms are rich in the fcc lattice. Annealing experiments show that the Fe atoms at the interfaces are easy to cluster to α-Fe at a lower temperature, whereas the iron atoms in the lattice will form γ-Fe first at temperature above 350℃, and then transform to bcc Fe展开更多
A data driven computational model that accounts for more than two material states has been presented in this work. Presented model can account for multiple state variables, such as stresses,strains, strain rates and f...A data driven computational model that accounts for more than two material states has been presented in this work. Presented model can account for multiple state variables, such as stresses,strains, strain rates and failure stress, as compared to previously reported models with two states.Model is used to perform deformation and failure simulations of carbon nanotubes and carbon nanotube/epoxy nanocomposites. The model capability of capturing the strain rate dependent deformation and failure has been demonstrated through predictions against uniaxial test data taken from literature. The predicted results show a good agreement between data set taken from literature and simulations.展开更多
To be used as five-fingered myoelectric hands in daily living, robotic hands must be lightweight with the size of human hands. In addition, they must possess the DoFs (degrees of freedom) and high grip force similar...To be used as five-fingered myoelectric hands in daily living, robotic hands must be lightweight with the size of human hands. In addition, they must possess the DoFs (degrees of freedom) and high grip force similar to those of human hands. Balancing these requirements involves a trade-off; ideal robotic hands have yet to sufficiently satisfy both requirements. Herein, a power allocation mechanism is proposed to improve the grip force without increasing the size or weight of robotic hands by using redundant DoFs during pinching motions. Additionally, this mechanism is applied to an actual five-fingered myoelectric hand, which produces seven types of motions necessary for activities of daily living and realizes a -60% improvement in fingertip force, allowing three fingers to pinch objects exceeding 1 kg.展开更多
Nature provides a wealth of bio-inspiration for advanced material research.Assembling various nanomaterials into biomimetic microtextures with bioinspired functionalities has spurred increasing research interests and ...Nature provides a wealth of bio-inspiration for advanced material research.Assembling various nanomaterials into biomimetic microtextures with bioinspired functionalities has spurred increasing research interests and facilitated technological advances in various applications.In recent years,two-dimensional materials(2DMs)have emerged as important building block units in the biomimicry field due to their distinct chemical,physical,electrical,electrochemical,and catalytic properties.In this review article,various mechanically driven assembly approaches are summarized to fabricate various genealogies of biomimetic 2DM microtextures with bio-inspired multifunctionality.First,sequential deformation strategies are discussed to programmably construct higher dimensional 2DM microtextures,ranging from wrinkles/crumples(one-time deformation)to multiscale hierarchies(multiple deformations).Next,the current progress using higher dimensional 2DM microtextures to imitate different biological structures and/or induce bio-inspired multifunctionality is systematically summarized.Four showcases of bio-inspiration and biomimicry using different 2DM nanosheets are highlighted:(1)wrinkle patterns of an earthworm that spur the design of strain sensors with programmable working ranges and sensitivities,(2)wrinkle appearance of a Shar-Pei dog that motivates the fabrication of stretchable energy storage devices,(3)hierarchical scale textures of a desert lizard that inspire cation-induced gelation platforms for 2DM aerogels,and(4)wrinkle skin of an elephant that influences the development of 2DM protective skin for soft robots.Finally,challenges and future opportunities of adopting 2DM nanosheets to assemble biomimetic microstructures with synergistic functionalities are discussed.展开更多
基金supported by China Geological Survey Bureau potash resources investigation and evaluation project (1212011085524)NSFC projects (40872134, 41272227 )
文摘1 Introduction Physical and numerical models are constructed to investigate the evolution and mechanism of salt migration driven by tectonic processes.In recent years,we have designed and ran series of models to simulate salt
基金Research and Application of Key Technologies for Tight Gas Production Improvement and Rehabilitation of Linxing Shenfu(YXKY-ZL-01-2021)。
文摘Based on the actual data collected from the tight sandstone development zone, correlation analysis using theSpearman method was conducted to determine the main factors influencing the gas production rate of tightsandstone fracturing. An integrated model combining geological engineering and numerical simulation of fracturepropagation and production was completed. Based on data analysis, the hydraulic fracture parameters wereoptimized to develop a differentiated fracturing treatment adjustment plan. The results indicate that the influenceof geological and engineering factors in the X1 and X2 development zones in the study area differs significantly.Therefore, it is challenging to adopt a uniform development strategy to achieve rapid production increase. Thedata analysis reveals that the variation in gas production rate is primarily affected by the reservoir thickness andpermeability parameters as geological factors. On the other hand, the amount of treatment fluid and proppantaddition significantly impact the gas production rate as engineering factors. Among these factors, the influence ofgeological factors is more pronounced in block X1. Therefore, the main focus should be on further optimizing thefracturing interval and adjusting the geological development well location. Given the existing well location, thereis limited potential for further optimizing fracture parameters to increase production. For block X2, the fracturingparameters should be optimized. Data screening was conducted to identify outliers in the entire dataset, and adata-driven fracturing parameter optimization method was employed to determine the basic adjustment directionfor reservoir stimulation in the target block. This approach provides insights into the influence of geological,stimulation, and completion parameters on gas production rate. Consequently, the subsequent fracturing parameteroptimization design can significantly reduce the modeling and simulation workload and guide field operations toimprove and optimize hydraulic fracturing efficiency.
基金supported by the Key Research and Development Project of Shandong (Nos.2021CXGC011202,2020CXGC011404,and 2022CXGC021002)the National Natural Science Foundation of China (No.22276006)。
文摘This study employed multispectral techniques to evaluate fulvic acid(FA)compositional characteristic and elucidate its biodegradation mechanisms during partial nitritation(PN)process.Results showed that FA removal efficiency(FRE)decreased from 90.22 to 23.11%when FA concentrations in the reactor were increased from 0 to 162.30 mg/L,and that molecular size,degree of aromatization and humification of the effluent FA macromolecules all increased after treatment.Microbial population analysis indicated that the proliferation of the Comamonas,OLB12 and Thauera exhibit high FA utilization capacity in lower concentrations(<50.59 mg/L),promoting the degradation and removal of macromolecular FA.In addition,the sustained increase in external FA may decrease the abundance of above functional microorganisms,resulting in a rapid drop in FRE.Furthermore,from the genetic perspective,the elevated FA levels restricted carbohydrate(ko00620,ko00010 and ko00020)and nitrogen(HAO,AMO,NIR and NOR)metabolism-related pathways,thereby impeding FA removal and total nitrogen loss associated with N_(2)O emissions.
文摘Highly supersaturated nanocrystalline fcc Fe60Cu40 alloy has been prepared by mechanical alloying of elemental powders. The phase transformation is monitored by X-ray diffraction (XRD),Mossbauer spectroscopy and extended X-ray absorption fine structure (EXAFS). The powder obtained after milling is of single fcc structure with grain size of nanometer order. The Mossbauer spectra of the milled powder can be fitted by two subspectra whose hyperfine magnetic fields are 16 MA/m and 20 MA/m while that of pure Fe disappeared. EXAFS results show that the radial structure function (RSF) of Fe K-edge changed drastically and finally became similar to that of reference Cu K-edge, while that of Cu K-edge nearly keeps unchanged in the process of milling. These imply that bcc Fe really transforms to fcc structure and alloying between Fe and Cu occurs truly on an atomic scale. EXAFS results indicate that iron atoms tend to segregate at the boundaries and Cu atoms are rich in the fcc lattice. Annealing experiments show that the Fe atoms at the interfaces are easy to cluster to α-Fe at a lower temperature, whereas the iron atoms in the lattice will form γ-Fe first at temperature above 350℃, and then transform to bcc Fe
文摘A data driven computational model that accounts for more than two material states has been presented in this work. Presented model can account for multiple state variables, such as stresses,strains, strain rates and failure stress, as compared to previously reported models with two states.Model is used to perform deformation and failure simulations of carbon nanotubes and carbon nanotube/epoxy nanocomposites. The model capability of capturing the strain rate dependent deformation and failure has been demonstrated through predictions against uniaxial test data taken from literature. The predicted results show a good agreement between data set taken from literature and simulations.
文摘To be used as five-fingered myoelectric hands in daily living, robotic hands must be lightweight with the size of human hands. In addition, they must possess the DoFs (degrees of freedom) and high grip force similar to those of human hands. Balancing these requirements involves a trade-off; ideal robotic hands have yet to sufficiently satisfy both requirements. Herein, a power allocation mechanism is proposed to improve the grip force without increasing the size or weight of robotic hands by using redundant DoFs during pinching motions. Additionally, this mechanism is applied to an actual five-fingered myoelectric hand, which produces seven types of motions necessary for activities of daily living and realizes a -60% improvement in fingertip force, allowing three fingers to pinch objects exceeding 1 kg.
基金support provided by the Start-Up Fund of University of Maryland,College Park(KFS No.:2957431 to P.-Y.Chen)Fundings for this research were provided by Energy Innovation Seed Grant from Maryland Energy Innovation Institute(MEI^2)(KFS No.:2957597 to P.-Y.Chen)supported by the Air Force Office of Scientific Research under award number FA2386-21-1-4065(KFS No.:5284212 to P.-Y.Chen)。
文摘Nature provides a wealth of bio-inspiration for advanced material research.Assembling various nanomaterials into biomimetic microtextures with bioinspired functionalities has spurred increasing research interests and facilitated technological advances in various applications.In recent years,two-dimensional materials(2DMs)have emerged as important building block units in the biomimicry field due to their distinct chemical,physical,electrical,electrochemical,and catalytic properties.In this review article,various mechanically driven assembly approaches are summarized to fabricate various genealogies of biomimetic 2DM microtextures with bio-inspired multifunctionality.First,sequential deformation strategies are discussed to programmably construct higher dimensional 2DM microtextures,ranging from wrinkles/crumples(one-time deformation)to multiscale hierarchies(multiple deformations).Next,the current progress using higher dimensional 2DM microtextures to imitate different biological structures and/or induce bio-inspired multifunctionality is systematically summarized.Four showcases of bio-inspiration and biomimicry using different 2DM nanosheets are highlighted:(1)wrinkle patterns of an earthworm that spur the design of strain sensors with programmable working ranges and sensitivities,(2)wrinkle appearance of a Shar-Pei dog that motivates the fabrication of stretchable energy storage devices,(3)hierarchical scale textures of a desert lizard that inspire cation-induced gelation platforms for 2DM aerogels,and(4)wrinkle skin of an elephant that influences the development of 2DM protective skin for soft robots.Finally,challenges and future opportunities of adopting 2DM nanosheets to assemble biomimetic microstructures with synergistic functionalities are discussed.