Mediastinal neoplasms are rare in the elderly,and clinical suspicion is the first and most important step of differential diagnosis.Mediastinal tumors can be misdiagnosed because their symptoms or signs can overlap wi...Mediastinal neoplasms are rare in the elderly,and clinical suspicion is the first and most important step of differential diagnosis.Mediastinal tumors can be misdiagnosed because their symptoms or signs can overlap with cardiovascular diseases,which have a higher prevalence among the older population.The diagnostic process should be managed with multimodality imaging and clinical judgement.Here,the case of a 74-year-old male patient,who presented with shortness of breath,is examined.A chest X-ray revealed an increased cardiothoracic ratio,and he was diagnosed with hemopericardium following an emergent chest computed tomography.In the echocardiography,it was suspected that a hyperechogenic area adjacent to the heart might be due to a mass,and further examinations confirmed a mediastinal neoplasm.A surgical biopsy was performed,and it was determined to be a mesenchymal tumor.To conclude,clinicians should keep in mind the possibility of paracardiac neoplasm in the elderly,as well as in other age groups,when encountering mediastinal widening so that the patient can be protected from unnecessary interventions such as pericardiocentesis.展开更多
This study aimed to investigate the effect of varying pyrite(Py)content on copper(Cu)in the presence of different regrinding conditions,which were altered using different types of grinding media:iron,ceramic balls,and...This study aimed to investigate the effect of varying pyrite(Py)content on copper(Cu)in the presence of different regrinding conditions,which were altered using different types of grinding media:iron,ceramic balls,and their mixture,followed by flotation in the cleaner stage.The flotation performance of rough Cu concentrate can be improved by changing the regrinding conditions based on the Py content.Scanning electron microscopy,X-ray spectrometry,ethylenediaminetetraacetic acid disodium salt extraction,and X-ray photoelectron spectroscopy studies illustrated that when the Py content was high,the use of iron media in regrinding promoted the generation of hydrophilic Fe OOH on the surface of Py and improved the Cu grade.The ceramic medium with a low Py content prevented excessive Fe OOH from covering the surface of chalcopyrite(Cpy).Electrochemical studies further showed that the galvanic corrosion current of Cpy-Py increased with the addition of Py and became stronger with the participation of iron media.展开更多
2024年10月,Lancet与JAMA分别发表了关于社交媒体对青少年精神健康影响的社论——《Unhealthy influencers?Social Media and Youth Mental Health》和《Social Media and Suicide Risk in Youth》。文章指出,在过去15年,随着社交媒体...2024年10月,Lancet与JAMA分别发表了关于社交媒体对青少年精神健康影响的社论——《Unhealthy influencers?Social Media and Youth Mental Health》和《Social Media and Suicide Risk in Youth》。文章指出,在过去15年,随着社交媒体使用频率的增加,10~24岁人群的精神疾病患病率及自我伤害行为出现显著增长的现象。展开更多
To meet the requirements of electromagnetic(EM)theory and applied physics,this study presents an overview of the state-of-the-art research on obtaining the EM properties of media and points out potential solutions tha...To meet the requirements of electromagnetic(EM)theory and applied physics,this study presents an overview of the state-of-the-art research on obtaining the EM properties of media and points out potential solutions that can break through the bottlenecks of current methods.Firstly,based on the survey of three mainstream approaches for acquiring EM properties of media,we identify the difficulties when implementing them in realistic environments.With a focus on addressing these problems and challenges,we propose a novel paradigm for obtaining the EM properties of multi-type media in realistic environments.Particularly,within this paradigm,we describe the implementation approach of the key technology,namely“multipath extraction using heterogeneous wave propagation data in multi-spectrum cases”.Finally,the latest measurement and simulation results show that the EM properties of multi-type media in realistic environments can be precisely and efficiently acquired by the methodology proposed in this study.展开更多
In the digital age,where traditional culture is in danger of gradually disappearing,one iconic figure has taken it upon herself to reverse the trend by reviving traditional skills.A prominent Chinese vlogger,Li Ziqi,w...In the digital age,where traditional culture is in danger of gradually disappearing,one iconic figure has taken it upon herself to reverse the trend by reviving traditional skills.A prominent Chinese vlogger,Li Ziqi,whose birth name is Li Jiajia,has amassed a vast online following by reinterpreting traditions that date back thousands of years.Following a threeyear absence from social media,she made a highly anticipated return with the release of three new videos in mid-November 2024.These videos represent the culmination of several months of behind-the-scenes work.展开更多
Background:Resilience is crucial for medical college students to thrive in the highly stressful environment of medical education.However,the prevalence of problematic internet use(PIU)in this population may negatively...Background:Resilience is crucial for medical college students to thrive in the highly stressful environment of medical education.However,the prevalence of problematic internet use(PIU)in this population may negatively impact their resilience.This study investigated the influence of problematic online gaming(PG)and problematic social media use(PSMU)on the resilience of medical college students in China.Methods:A sample of 5075 first-year medical college students from four Chinese universities was studied.PG served as the independent variable,resilience as the dependent variable,fatigue as the mediator,and PSMU as the moderator.Structural equation modeling was conducted using LISREL 8.80.Additionally,a moderated mediation model was evaluated using the jAMM module in jamovi 2.6.13.Results:The study’s findings revealed significant negative correlations between resilience and the variables of PG,PSMU,and fatigue.Fatigue mediated the relationship between PG and resilience(B=−0.04,95%CI=[−0.05,−0.03]).PSMU moderated the direct relationship between PG and resilience with the interaction term PG×PSMU significant(B=−0.004,t=−6.501,p<0.001)and the first stage(PG→fatigue)of the mediation with PG×PSMU significant(B=0.055,t=8.351,p<0.001).The detrimental effects of PG on resilience were more pronounced among individuals with lower levels of PSMU.Conclusion:This study concluded that addressing PIU,particularly PG,is essential for fostering resilience in medical college students.While PSMU itself is maladaptive,the underlying social media engagement may serve a protective role through social support in mitigating the adverse effects of PG on resilience.展开更多
The accurate simulation of wave propagation in real media requires properly taking the attenuation into account,which leads to wave dissipation together with its causal companion,wave dispersion.In this study,to obtai...The accurate simulation of wave propagation in real media requires properly taking the attenuation into account,which leads to wave dissipation together with its causal companion,wave dispersion.In this study,to obtain a weak formulation of heterogenous viscoacoustic wave propagation in an infinite domain,the viscoacoustic medium is first characterized by its frequency-dependent complex bulk compliance instead of the classically used complex bulk modulus.Then,a mechanical model using serially connected standard linear solids(SSLS)is built to obtain the rational approximation of the complex bulk compliance whose parameters are calculated via an adapted nonlinear optimization method.Utilizing the obtained bulk compliance-based constitutive relation,a novel second-order viscoacoustic wave equation in the frequency domain is derived,of which the weak formulation can be physically explained as the virtual work equation and can thus be discretized using a continuous spectral element method in space.Additionally,a new method is introduced to address the convolution terms involved in the inverse Fourier transform,whose accurate time integration can then be achieved using an explicit time scheme,which avoids the transient growth that exists in the classical method.The resulting full time-space decoupling scheme can handle wave propagation in arbitrary heterogeneous media.Moreover,to treat the wave propagation in an infinite domain,a perfectly matched layer in weak formulation is derived for the truncation of the infinite domain via complex coordinate stretching of the virtual work equation.With only minor modification,the resulting perfectly matched layer can be implemented using the same time scheme as for the wave equation inside the truncated domain.The accuracy,numerical stability,and versatility of the new proposed scheme are demonstrated with numerical examples.展开更多
Introduction Esophageal perforation(EP)is a rare but potentially lethal clinical condition with a mortality rate as high as 20%[1].The most common causes of EP are iatrogenic,spontaneous,and foreign body ingestion[2]....Introduction Esophageal perforation(EP)is a rare but potentially lethal clinical condition with a mortality rate as high as 20%[1].The most common causes of EP are iatrogenic,spontaneous,and foreign body ingestion[2].EP is often accompanied by serious complications such as hemorrhagic pericardial effusion,mediastinal abscesses,and sepsis[3].Management is multidisciplinary and involves emergency physicians,thoracic surgeons,otaorhinolaryngologists,gastroenterologists,anesthesiologists,and radiologists[1].We herein report a case of pneumomediastinum caused by EP and discuss the effect of percutaneous ultrasound(US)-guided drainage through the retropharyngeal space.展开更多
With the explosive growth of false information on social media platforms, the automatic detection of multimodalfalse information has received increasing attention. Recent research has significantly contributed to mult...With the explosive growth of false information on social media platforms, the automatic detection of multimodalfalse information has received increasing attention. Recent research has significantly contributed to multimodalinformation exchange and fusion, with many methods attempting to integrate unimodal features to generatemultimodal news representations. However, they still need to fully explore the hierarchical and complex semanticcorrelations between different modal contents, severely limiting their performance detecting multimodal falseinformation. This work proposes a two-stage detection framework for multimodal false information detection,called ASMFD, which is based on image aesthetic similarity to segment and explores the consistency andinconsistency features of images and texts. Specifically, we first use the Contrastive Language-Image Pre-training(CLIP) model to learn the relationship between text and images through label awareness and train an imageaesthetic attribute scorer using an aesthetic attribute dataset. Then, we calculate the aesthetic similarity betweenthe image and related images and use this similarity as a threshold to divide the multimodal correlation matrixinto consistency and inconsistencymatrices. Finally, the fusionmodule is designed to identify essential features fordetectingmultimodal false information. In extensive experiments on four datasets, the performance of the ASMFDis superior to state-of-the-art baseline methods.展开更多
This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeabi...This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications.展开更多
In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a gene...In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.展开更多
Background:In recent years,there has been increased research interest in both smartphone addiction and social media addiction as well as the development of psychometric instruments to assess these constructs.However,t...Background:In recent years,there has been increased research interest in both smartphone addiction and social media addiction as well as the development of psychometric instruments to assess these constructs.However,there is a lack of psychometric evaluation for instruments assessing smartphone addiction and social media addiction in Thailand.The present study evaluated the psychometric properties and gender measurement invariance of the Thai version of the Smartphone Application-Based Addiction Scale(SABAS)and Bergen Social Media Addiction Scale(BSMAS).Method:A total of 801 Thai university students participated in an online survey from January 2022 to July 2022 which included demographic information,SABAS,BSMAS,and the Internet Gaming Disorder Scale-Short Form(IGDS9-SF).Results:Confirmatory Factor Analyses(CFAs)found that both the SABAS and BSMAS had a one-factor structure.Findings demonstrated adequate psychometric properties of both instruments and also supported measurement invariance across genders.Moreover,scores on the SABAS and BSMAS were correlated with scores on the IGDS9-SF.Conclusion:The results indicated that the SABAS and BSMAS are useful psychometric instruments for assessing the risk of smartphone addiction and social media addiction among Thai young adults.展开更多
Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advecti...Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications.展开更多
Contrast-induced acute kidney injury(CI-AKI)is the third leading cause of acute kidney injury deriving from the intravascular administration of contrast media in diagnostic and therapeutic procedures and leading to lo...Contrast-induced acute kidney injury(CI-AKI)is the third leading cause of acute kidney injury deriving from the intravascular administration of contrast media in diagnostic and therapeutic procedures and leading to longer in-hospital stay and increased short and long-term mortality.Its pathophysiology,although not well-established,revolves around medullary hypoxia paired with the direct toxicity of the substance to the kidney.Critically ill patients,as well as those with pre-existing renal disease and cardiovascular comorbidities,are more susceptible to CI-AKI.Despite the continuous research in the field of CI-AKI prevention,clinical practice is based mostly on periprocedural hydration.In this review,all the investigated methods of prevention are presented,with an emphasis on the latest evidence regarding the potential of RenalGuard and contrast removal systems for CI-AKI prevention in high-risk individuals.展开更多
文摘Mediastinal neoplasms are rare in the elderly,and clinical suspicion is the first and most important step of differential diagnosis.Mediastinal tumors can be misdiagnosed because their symptoms or signs can overlap with cardiovascular diseases,which have a higher prevalence among the older population.The diagnostic process should be managed with multimodality imaging and clinical judgement.Here,the case of a 74-year-old male patient,who presented with shortness of breath,is examined.A chest X-ray revealed an increased cardiothoracic ratio,and he was diagnosed with hemopericardium following an emergent chest computed tomography.In the echocardiography,it was suspected that a hyperechogenic area adjacent to the heart might be due to a mass,and further examinations confirmed a mediastinal neoplasm.A surgical biopsy was performed,and it was determined to be a mesenchymal tumor.To conclude,clinicians should keep in mind the possibility of paracardiac neoplasm in the elderly,as well as in other age groups,when encountering mediastinal widening so that the patient can be protected from unnecessary interventions such as pericardiocentesis.
基金financially supported by the National Key Research and Development Plan of China(No.2022YFC2904603)the National Natural Science Foundation of China(No.52174268)。
文摘This study aimed to investigate the effect of varying pyrite(Py)content on copper(Cu)in the presence of different regrinding conditions,which were altered using different types of grinding media:iron,ceramic balls,and their mixture,followed by flotation in the cleaner stage.The flotation performance of rough Cu concentrate can be improved by changing the regrinding conditions based on the Py content.Scanning electron microscopy,X-ray spectrometry,ethylenediaminetetraacetic acid disodium salt extraction,and X-ray photoelectron spectroscopy studies illustrated that when the Py content was high,the use of iron media in regrinding promoted the generation of hydrophilic Fe OOH on the surface of Py and improved the Cu grade.The ceramic medium with a low Py content prevented excessive Fe OOH from covering the surface of chalcopyrite(Cpy).Electrochemical studies further showed that the galvanic corrosion current of Cpy-Py increased with the addition of Py and became stronger with the participation of iron media.
文摘2024年10月,Lancet与JAMA分别发表了关于社交媒体对青少年精神健康影响的社论——《Unhealthy influencers?Social Media and Youth Mental Health》和《Social Media and Suicide Risk in Youth》。文章指出,在过去15年,随着社交媒体使用频率的增加,10~24岁人群的精神疾病患病率及自我伤害行为出现显著增长的现象。
基金supported by the Beijing Natural Science Foundation(No.L212029)the National Natural Science Foundation of China(No.62271043).
文摘To meet the requirements of electromagnetic(EM)theory and applied physics,this study presents an overview of the state-of-the-art research on obtaining the EM properties of media and points out potential solutions that can break through the bottlenecks of current methods.Firstly,based on the survey of three mainstream approaches for acquiring EM properties of media,we identify the difficulties when implementing them in realistic environments.With a focus on addressing these problems and challenges,we propose a novel paradigm for obtaining the EM properties of multi-type media in realistic environments.Particularly,within this paradigm,we describe the implementation approach of the key technology,namely“multipath extraction using heterogeneous wave propagation data in multi-spectrum cases”.Finally,the latest measurement and simulation results show that the EM properties of multi-type media in realistic environments can be precisely and efficiently acquired by the methodology proposed in this study.
文摘In the digital age,where traditional culture is in danger of gradually disappearing,one iconic figure has taken it upon herself to reverse the trend by reviving traditional skills.A prominent Chinese vlogger,Li Ziqi,whose birth name is Li Jiajia,has amassed a vast online following by reinterpreting traditions that date back thousands of years.Following a threeyear absence from social media,she made a highly anticipated return with the release of three new videos in mid-November 2024.These videos represent the culmination of several months of behind-the-scenes work.
基金supported by General Education Project of the National Social Science Foundation in 2020:“Multi-Dimensional Reconstruction of Peer Review Mechanisms in the Evaluation of Scientific and Technological Talents in Universities(BIA200167).”。
文摘Background:Resilience is crucial for medical college students to thrive in the highly stressful environment of medical education.However,the prevalence of problematic internet use(PIU)in this population may negatively impact their resilience.This study investigated the influence of problematic online gaming(PG)and problematic social media use(PSMU)on the resilience of medical college students in China.Methods:A sample of 5075 first-year medical college students from four Chinese universities was studied.PG served as the independent variable,resilience as the dependent variable,fatigue as the mediator,and PSMU as the moderator.Structural equation modeling was conducted using LISREL 8.80.Additionally,a moderated mediation model was evaluated using the jAMM module in jamovi 2.6.13.Results:The study’s findings revealed significant negative correlations between resilience and the variables of PG,PSMU,and fatigue.Fatigue mediated the relationship between PG and resilience(B=−0.04,95%CI=[−0.05,−0.03]).PSMU moderated the direct relationship between PG and resilience with the interaction term PG×PSMU significant(B=−0.004,t=−6.501,p<0.001)and the first stage(PG→fatigue)of the mediation with PG×PSMU significant(B=0.055,t=8.351,p<0.001).The detrimental effects of PG on resilience were more pronounced among individuals with lower levels of PSMU.Conclusion:This study concluded that addressing PIU,particularly PG,is essential for fostering resilience in medical college students.While PSMU itself is maladaptive,the underlying social media engagement may serve a protective role through social support in mitigating the adverse effects of PG on resilience.
基金National Natural Science Foundation of China under Grant No.U2039209the National Key R&D Program of China under Grant No.2022YFC3004303+1 种基金the Heilongjiang Natural Science Foundation for Distinguished Young Scholars under Grant No.JQ2022E006Heilongjiang Natural Science Foundation Joint Guidance Project under Grant No.LH2021E122。
文摘The accurate simulation of wave propagation in real media requires properly taking the attenuation into account,which leads to wave dissipation together with its causal companion,wave dispersion.In this study,to obtain a weak formulation of heterogenous viscoacoustic wave propagation in an infinite domain,the viscoacoustic medium is first characterized by its frequency-dependent complex bulk compliance instead of the classically used complex bulk modulus.Then,a mechanical model using serially connected standard linear solids(SSLS)is built to obtain the rational approximation of the complex bulk compliance whose parameters are calculated via an adapted nonlinear optimization method.Utilizing the obtained bulk compliance-based constitutive relation,a novel second-order viscoacoustic wave equation in the frequency domain is derived,of which the weak formulation can be physically explained as the virtual work equation and can thus be discretized using a continuous spectral element method in space.Additionally,a new method is introduced to address the convolution terms involved in the inverse Fourier transform,whose accurate time integration can then be achieved using an explicit time scheme,which avoids the transient growth that exists in the classical method.The resulting full time-space decoupling scheme can handle wave propagation in arbitrary heterogeneous media.Moreover,to treat the wave propagation in an infinite domain,a perfectly matched layer in weak formulation is derived for the truncation of the infinite domain via complex coordinate stretching of the virtual work equation.With only minor modification,the resulting perfectly matched layer can be implemented using the same time scheme as for the wave equation inside the truncated domain.The accuracy,numerical stability,and versatility of the new proposed scheme are demonstrated with numerical examples.
文摘Introduction Esophageal perforation(EP)is a rare but potentially lethal clinical condition with a mortality rate as high as 20%[1].The most common causes of EP are iatrogenic,spontaneous,and foreign body ingestion[2].EP is often accompanied by serious complications such as hemorrhagic pericardial effusion,mediastinal abscesses,and sepsis[3].Management is multidisciplinary and involves emergency physicians,thoracic surgeons,otaorhinolaryngologists,gastroenterologists,anesthesiologists,and radiologists[1].We herein report a case of pneumomediastinum caused by EP and discuss the effect of percutaneous ultrasound(US)-guided drainage through the retropharyngeal space.
文摘With the explosive growth of false information on social media platforms, the automatic detection of multimodalfalse information has received increasing attention. Recent research has significantly contributed to multimodalinformation exchange and fusion, with many methods attempting to integrate unimodal features to generatemultimodal news representations. However, they still need to fully explore the hierarchical and complex semanticcorrelations between different modal contents, severely limiting their performance detecting multimodal falseinformation. This work proposes a two-stage detection framework for multimodal false information detection,called ASMFD, which is based on image aesthetic similarity to segment and explores the consistency andinconsistency features of images and texts. Specifically, we first use the Contrastive Language-Image Pre-training(CLIP) model to learn the relationship between text and images through label awareness and train an imageaesthetic attribute scorer using an aesthetic attribute dataset. Then, we calculate the aesthetic similarity betweenthe image and related images and use this similarity as a threshold to divide the multimodal correlation matrixinto consistency and inconsistencymatrices. Finally, the fusionmodule is designed to identify essential features fordetectingmultimodal false information. In extensive experiments on four datasets, the performance of the ASMFDis superior to state-of-the-art baseline methods.
文摘This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications.
基金supported by the Swiss National Science Foundation(Grant No.189882)the National Natural Science Foundation of China(Grant No.41961134032)support provided by the New Investigator Award grant from the UK Engineering and Physical Sciences Research Council(Grant No.EP/V012169/1).
文摘In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.
基金This research was funded by the Ministry of Science and Technology,Taiwan(MOST 110-2410-H-006-115)the Higher Education Sprout Project,Ministry of Education to the Headquarters of University Advancement at National Cheng Kung University(NCKU)the 2021 Southeast and South Asia and Taiwan Universities Joint Research Scheme(NCKU 31),and the E-Da Hospital(EDAHC111004).
文摘Background:In recent years,there has been increased research interest in both smartphone addiction and social media addiction as well as the development of psychometric instruments to assess these constructs.However,there is a lack of psychometric evaluation for instruments assessing smartphone addiction and social media addiction in Thailand.The present study evaluated the psychometric properties and gender measurement invariance of the Thai version of the Smartphone Application-Based Addiction Scale(SABAS)and Bergen Social Media Addiction Scale(BSMAS).Method:A total of 801 Thai university students participated in an online survey from January 2022 to July 2022 which included demographic information,SABAS,BSMAS,and the Internet Gaming Disorder Scale-Short Form(IGDS9-SF).Results:Confirmatory Factor Analyses(CFAs)found that both the SABAS and BSMAS had a one-factor structure.Findings demonstrated adequate psychometric properties of both instruments and also supported measurement invariance across genders.Moreover,scores on the SABAS and BSMAS were correlated with scores on the IGDS9-SF.Conclusion:The results indicated that the SABAS and BSMAS are useful psychometric instruments for assessing the risk of smartphone addiction and social media addiction among Thai young adults.
基金supported as part of the Center for Hierarchical Waste Form Materials,an Energy Frontier Research Center funded by the U.S.Department of Energy,Office of Science,Basic Energy Sciences under Award No.DE-SC0016574.
文摘Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications.
文摘Contrast-induced acute kidney injury(CI-AKI)is the third leading cause of acute kidney injury deriving from the intravascular administration of contrast media in diagnostic and therapeutic procedures and leading to longer in-hospital stay and increased short and long-term mortality.Its pathophysiology,although not well-established,revolves around medullary hypoxia paired with the direct toxicity of the substance to the kidney.Critically ill patients,as well as those with pre-existing renal disease and cardiovascular comorbidities,are more susceptible to CI-AKI.Despite the continuous research in the field of CI-AKI prevention,clinical practice is based mostly on periprocedural hydration.In this review,all the investigated methods of prevention are presented,with an emphasis on the latest evidence regarding the potential of RenalGuard and contrast removal systems for CI-AKI prevention in high-risk individuals.