By using efficient and timely medical diagnostic decision making,clinicians can positively impact the quality and cost of medical care.However,the high similarity of clinical manifestations between diseases and the li...By using efficient and timely medical diagnostic decision making,clinicians can positively impact the quality and cost of medical care.However,the high similarity of clinical manifestations between diseases and the limitation of clinicians’knowledge both bring much difficulty to decision making in diagnosis.Therefore,building a decision support system that can assist medical staff in diagnosing and treating diseases has lately received growing attentions in the medical domain.In this paper,we employ a multi-label classification framework to classify the Chinese electronic medical records to establish corresponding relation between the medical records and disease categories,and compare this method with the traditional medical expert system to verify the performance.To select the best subset of patient features,we propose a feature selection method based on the composition and distribution of symptoms in electronic medical records and compare it with the traditional feature selection methods such as chi-square test.We evaluate the feature selection methods and diagnostic models from two aspects,false negative rate(FNR)and accuracy.Extensive experiments have conducted on a real-world Chinese electronic medical record database.The evaluation results demonstrate that our proposed feature selection method can improve the accuracy and reduce the FNR compare to the traditional feature selection methods,and the multi-label classification framework have better accuracy and lower FNR than the traditional expert system.展开更多
The Internet of Medical Things(IoMT)will come to be of great importance in the mediation of medical disputes,as it is emerging as the core of intelligent medical treatment.First,IoMT can track the entire medical treat...The Internet of Medical Things(IoMT)will come to be of great importance in the mediation of medical disputes,as it is emerging as the core of intelligent medical treatment.First,IoMT can track the entire medical treatment process in order to provide detailed trace data in medical dispute resolution.Second,IoMT can infiltrate the ongoing treatment and provide timely intelligent decision support to medical staff.This information includes recommendation of similar historical cases,guidance for medical treatment,alerting of hired dispute profiteers etc.The multi-label classification of medical dispute documents(MDDs)plays an important role as a front-end process for intelligent decision support,especially in the recommendation of similar historical cases.However,MDDs usually appear as long texts containing a large amount of redundant information,and there is a serious distribution imbalance in the dataset,which directly leads to weaker classification performance.Accordingly,in this paper,a multi-label classification method based on key sentence extraction is proposed for MDDs.The method is divided into two parts.First,the attention-based hierarchical bi-directional long short-term memory(BiLSTM)model is used to extract key sentences from documents;second,random comprehensive sampling Bagging(RCS-Bagging),which is an ensemble multi-label classification model,is employed to classify MDDs based on key sentence sets.The use of this approach greatly improves the classification performance.Experiments show that the performance of the two models proposed in this paper is remarkably better than that of the baseline methods.展开更多
This article aims to introduce the design concept and implementation methods of the flipped class of medical English reading based on We Chat platform in order to explore problems and solutions existing in the teachin...This article aims to introduce the design concept and implementation methods of the flipped class of medical English reading based on We Chat platform in order to explore problems and solutions existing in the teaching. Based on typical characteristics of the flipped class, college students' addiction for smartphones and the appropriateness and convenience of We Chat, it is implemented with the help of We Chat. It can be divided into three steps to implement: pre-class, in-class and post-class. However, to a certain extent, this kind of teaching mode is limited by students' self-consciousness, enthusiasm, language foundation,self-learning ability and teachers' guidance. Focusing on the above problems, the author gives the relevant solutions.展开更多
目的:利用潜类别增长模型(latent class growth model,LCGM)分析老年帕金森病患者用药依从性轨迹,并验证其影响因素。方法:对124例原发性老年帕金森病患者进行12个月随访调查,调查工具包括一般资料调查表和Morisky用药依从性量表。通过...目的:利用潜类别增长模型(latent class growth model,LCGM)分析老年帕金森病患者用药依从性轨迹,并验证其影响因素。方法:对124例原发性老年帕金森病患者进行12个月随访调查,调查工具包括一般资料调查表和Morisky用药依从性量表。通过潜类别增长模型识别患者用药依从性轨迹,采用有序多分类Logistic回归分析用药依从性轨迹的影响因素。结果:老年帕金森病患者用药依从性分为“高-持续型”“中-下降型”和“低-下降型”3种类型,且该3种类型文化程度、工作状态、用药种类、智力状态比较,差异有统计学意义(P<0.05)。有序多分类Logistic回归显示,工作状态、用药种类、智力状态是患者用药依从性轨迹的影响因素(P<0.05)。结论:老年帕金森患者用药依从性分为3种轨迹,工作状态、用药种类和智力状态是用药依从性轨迹类别的影响因素。展开更多
基金The authors would like to acknowledge the financial support from the National Natural Science Foundation of China(No.61379145)the Joint Funds of CETC(Grant No.20166141B08020101).
文摘By using efficient and timely medical diagnostic decision making,clinicians can positively impact the quality and cost of medical care.However,the high similarity of clinical manifestations between diseases and the limitation of clinicians’knowledge both bring much difficulty to decision making in diagnosis.Therefore,building a decision support system that can assist medical staff in diagnosing and treating diseases has lately received growing attentions in the medical domain.In this paper,we employ a multi-label classification framework to classify the Chinese electronic medical records to establish corresponding relation between the medical records and disease categories,and compare this method with the traditional medical expert system to verify the performance.To select the best subset of patient features,we propose a feature selection method based on the composition and distribution of symptoms in electronic medical records and compare it with the traditional feature selection methods such as chi-square test.We evaluate the feature selection methods and diagnostic models from two aspects,false negative rate(FNR)and accuracy.Extensive experiments have conducted on a real-world Chinese electronic medical record database.The evaluation results demonstrate that our proposed feature selection method can improve the accuracy and reduce the FNR compare to the traditional feature selection methods,and the multi-label classification framework have better accuracy and lower FNR than the traditional expert system.
基金supported by the National Key R&D Program of China(2018YFC0830200,Zhang,B,www.most.gov.cn)the Fundamental Research Funds for the Central Universities(2242018S30021 and 2242017S30023,Zhou S,www.seu.edu.cn)the Open Research Fund from Key Laboratory of Computer Network and Information Integration In Southeast University,Ministry of Education,China(3209012001C3,Zhang B,www.seu.edu.cn).
文摘The Internet of Medical Things(IoMT)will come to be of great importance in the mediation of medical disputes,as it is emerging as the core of intelligent medical treatment.First,IoMT can track the entire medical treatment process in order to provide detailed trace data in medical dispute resolution.Second,IoMT can infiltrate the ongoing treatment and provide timely intelligent decision support to medical staff.This information includes recommendation of similar historical cases,guidance for medical treatment,alerting of hired dispute profiteers etc.The multi-label classification of medical dispute documents(MDDs)plays an important role as a front-end process for intelligent decision support,especially in the recommendation of similar historical cases.However,MDDs usually appear as long texts containing a large amount of redundant information,and there is a serious distribution imbalance in the dataset,which directly leads to weaker classification performance.Accordingly,in this paper,a multi-label classification method based on key sentence extraction is proposed for MDDs.The method is divided into two parts.First,the attention-based hierarchical bi-directional long short-term memory(BiLSTM)model is used to extract key sentences from documents;second,random comprehensive sampling Bagging(RCS-Bagging),which is an ensemble multi-label classification model,is employed to classify MDDs based on key sentence sets.The use of this approach greatly improves the classification performance.Experiments show that the performance of the two models proposed in this paper is remarkably better than that of the baseline methods.
文摘This article aims to introduce the design concept and implementation methods of the flipped class of medical English reading based on We Chat platform in order to explore problems and solutions existing in the teaching. Based on typical characteristics of the flipped class, college students' addiction for smartphones and the appropriateness and convenience of We Chat, it is implemented with the help of We Chat. It can be divided into three steps to implement: pre-class, in-class and post-class. However, to a certain extent, this kind of teaching mode is limited by students' self-consciousness, enthusiasm, language foundation,self-learning ability and teachers' guidance. Focusing on the above problems, the author gives the relevant solutions.
文摘目的:利用潜类别增长模型(latent class growth model,LCGM)分析老年帕金森病患者用药依从性轨迹,并验证其影响因素。方法:对124例原发性老年帕金森病患者进行12个月随访调查,调查工具包括一般资料调查表和Morisky用药依从性量表。通过潜类别增长模型识别患者用药依从性轨迹,采用有序多分类Logistic回归分析用药依从性轨迹的影响因素。结果:老年帕金森病患者用药依从性分为“高-持续型”“中-下降型”和“低-下降型”3种类型,且该3种类型文化程度、工作状态、用药种类、智力状态比较,差异有统计学意义(P<0.05)。有序多分类Logistic回归显示,工作状态、用药种类、智力状态是患者用药依从性轨迹的影响因素(P<0.05)。结论:老年帕金森患者用药依从性分为3种轨迹,工作状态、用药种类和智力状态是用药依从性轨迹类别的影响因素。