In order to help older adults with cardiovascular disease navigate complex decisions, clinicians must know tenets of medical ethics and have good communication skills. The elements of decision making capacity and info...In order to help older adults with cardiovascular disease navigate complex decisions, clinicians must know tenets of medical ethics and have good communication skills. The elements of decision making capacity and informed consent are reviewed, using relevant clinical ex- amples to illustrate the basic concepts. The shared decision making model, by which clinician and patient work together to determine the plan of care, is described. Useful communication techniques to implement shared decision making are suggested.展开更多
Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning frame...Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.展开更多
This editorial highlights the remarkable advancements in medical treatment strategies for pancreatic neuroendocrine tumors(pan-NETs),emphasizing tailored approaches for specific subtypes.Cytoreductive surgery and soma...This editorial highlights the remarkable advancements in medical treatment strategies for pancreatic neuroendocrine tumors(pan-NETs),emphasizing tailored approaches for specific subtypes.Cytoreductive surgery and somatostatin analogs(SSAs)play pivotal roles in managing tumors,while palliative options such as molecular targeted therapy,peptide receptor radionuclide therapy,and chemotherapy are reserved for SSA-refractory patients.Gastrinomas,insul-inomas,glucagonomas,carcinoid tumors and VIPomas necessitate distinct thera-peutic strategies.Understanding the genetic basis of pan-NETs and exploring immunotherapies could lead to promising avenues for future research.This review underscores the evolving landscape of pan-NET treatment,offering renewed hope and improved outcomes for patients facing this complex disease.展开更多
Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is a...Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is also beneficial for three parametric data.By Pythagorean fuzzy sets,the difference is calculated only between two parameters(membership and non-membership).According to human thoughts,fuzzy data can be found in three parameters(membership uncertainty,and non-membership).So,to make a compromise decision,comparing Sq-LDFSs is essential.Existing measures of different fuzzy sets do,however,can have several flaws that can lead to counterintuitive results.For instance,they treat any increase or decrease in the membership degree as the same as the non-membership degree because the uncertainty does not change,even though each parameter has a different implication.In the Sq-LDFSs comparison,this research develops the differentialmeasure(DFM).Themain goal of the DFM is to cover the unfair arguments that come from treating different types of FSs opposing criteria equally.Due to their relative positions in the attribute space and the similarity of their membership and non-membership degrees,two Sq-LDFSs formthis preference connectionwhen the uncertainty remains same in both sets.According to the degree of superiority or inferiority,two Sq-LDFSs are shown as identical,equivalent,superior,or inferior over one another.The suggested DFM’s fundamental characteristics are provided.Based on the newly developed DFM,a unique approach tomultiple criterion group decision-making is offered.Our suggestedmethod verifies the novel way of calculating the expert weights for Sq-LDFSS as in PFSs.Our proposed technique in three parameters is applied to evaluate solid-state drives and choose the optimum photovoltaic cell in two applications by taking uncertainty parameter zero.The method’s applicability and validity shown by the findings are contrasted with those obtained using various other existing approaches.To assess its stability and usefulness,a sensitivity analysis is done.展开更多
While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present...While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.展开更多
Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professio...Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.展开更多
Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values...Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values or make ethical decisions,they may not meet the expectations of humans.Traditionally,an ethical decision-making framework is constructed by rule-based or statistical approaches.In this paper,we propose an ethical decision-making framework based on incremental ILP(Inductive Logic Programming),which can overcome the brittleness of rule-based approaches and little interpretability of statistical approaches.As the current incremental ILP makes it difficult to solve conflicts,we propose a novel ethical decision-making framework considering conflicts in this paper,which adopts our proposed incremental ILP system.The framework consists of two processes:the learning process and the deduction process.The first process records bottom clauses with their score functions and learns rules guided by the entailment and the score function.The second process obtains an ethical decision based on the rules.In an ethical scenario about chatbots for teenagers’mental health,we verify that our framework can learn ethical rules and make ethical decisions.Besides,we extract incremental ILP from the framework and compare it with the state-of-the-art ILP systems based on ASP(Answer Set Programming)focusing on conflict resolution.The results of comparisons show that our proposed system can generate better-quality rules than most other systems.展开更多
Objective:To provide a comprehensive review on the existing literature on medical management of urolithiasis.Methods:A thorough literature review was performed using Medline,PubMed/PMC,Embase,and the Cochrane Database...Objective:To provide a comprehensive review on the existing literature on medical management of urolithiasis.Methods:A thorough literature review was performed using Medline,PubMed/PMC,Embase,and the Cochrane Database of Systematic Reviews up to December 2022 to identify publications on the medical management of urolithiasis.Studies that assessed dietary and pharmacologic management of urolithiasis were reviewed;studies on medical expulsive therapy were not included in this review.Results:Medical management of urolithiasis ranges from the prophylactic management of kidney stone disease to dissolution therapies.While most treatment concepts have been long established,large randomized controlled trials are scarce.Dietary modification and increased fluid intake remain cornerstones in the conservative management of urolithiasis.A major limitation for medical management of urolithiasis is poor patient compliance.Conclusion:Medical management of urolithiasis is more important in patients with recurrent urolithiasis and patients with metabolic abnormalities putting them at higher risk of developing stones.Although medical management can be effective in limiting stone recurrence,medical interventions often fail due to poor compliance.展开更多
Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to ob...Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to objectively predict and identify strokes,this paper proposes a new stroke risk assessment decision-making model named Logistic-AdaBoost(Logistic-AB)based on machine learning.First,the categorical boosting(CatBoost)method is used to perform feature selection for all features of stroke,and 8 main features are selected to form a new index evaluation system to predict the risk of stroke.Second,the borderline synthetic minority oversampling technique(SMOTE)algorithm is applied to transform the unbalanced stroke dataset into a balanced dataset.Finally,the stroke risk assessment decision-makingmodel Logistic-AB is constructed,and the overall prediction performance of this new model is evaluated by comparing it with ten other similar models.The comparison results show that the new model proposed in this paper performs better than the two single algorithms(logistic regression and AdaBoost)on the four indicators of recall,precision,F1 score,and accuracy,and the overall performance of the proposed model is better than that of common machine learning algorithms.The Logistic-AB model presented in this paper can more accurately predict patients’stroke risk.展开更多
Background A medical content-based image retrieval(CBIR)system is designed to retrieve images from large imaging repositories that are visually similar to a user′s query image.CBIR is widely used in evidence-based di...Background A medical content-based image retrieval(CBIR)system is designed to retrieve images from large imaging repositories that are visually similar to a user′s query image.CBIR is widely used in evidence-based diagnosis,teaching,and research.Although the retrieval accuracy has largely improved,there has been limited development toward visualizing important image features that indicate the similarity of retrieved images.Despite the prevalence of 3D volumetric data in medical imaging such as computed tomography(CT),current CBIR systems still rely on 2D cross-sectional views for the visualization of retrieved images.Such 2D visualization requires users to browse through the image stacks to confirm the similarity of the retrieved images and often involves mental reconstruction of 3D information,including the size,shape,and spatial relations of multiple structures.This process is time-consuming and reliant on users'experience.Methods In this study,we proposed an importance-aware 3D volume visualization method.The rendering parameters were automatically optimized to maximize the visibility of important structures that were detected and prioritized in the retrieval process.We then integrated the proposed visualization into a CBIR system,thereby complementing the 2D cross-sectional views for relevance feedback and further analyses.Results Our preliminary results demonstrate that 3D visualization can provide additional information using multimodal positron emission tomography and computed tomography(PETCT)images of a non-small cell lung cancer dataset.展开更多
The high rates of depression,burnout,and increased risk of suicide among medical students,residents,and physicians in comparison with other careers signal a mental health crisis within our profession.We contend that t...The high rates of depression,burnout,and increased risk of suicide among medical students,residents,and physicians in comparison with other careers signal a mental health crisis within our profession.We contend that this crisis coupled with the inadequate acquisition of interpersonal skills during medical education results from the interaction between a challenging environment and the mental capital of individuals.Additionally,we posit that mindfulness-based practices are instrumental for the development of major components of mental capital,such as resilience,flexibility of mind,and learning skills,while also serving as a pathway to enhance empathy,compassion,self-awareness,conflict resolution,and relational abilities.Importantly,the evidence base supporting the effectiveness of mindfulness-based interventions has been increasing over the years,and a growing number of medical schools have already integrated mindfulness into their curricula.While we acknowledge that mindfulness is not a panacea for all educational and mental health problems in this field,we argue that there is currently an unprecedented opportunity to gather momentum,spread and study mindfulness-based programs in medical schools around the world as a way to address some longstanding shortcomings of the medical profession and the health and educational systems upon which it is rooted.展开更多
The pancreas is neither part of the five Zang organs(五脏) nor the six Fu organs(六腑).Thus,it has received little attention in Chinese medical literature.In the late 19th century,medical missionaries in China started...The pancreas is neither part of the five Zang organs(五脏) nor the six Fu organs(六腑).Thus,it has received little attention in Chinese medical literature.In the late 19th century,medical missionaries in China started translating and introducing anatomical and physiological knowledge about the pancreas.As for the word pancreas,an early and influential translation was “sweet meat”(甜肉),proposed by Benjamin Hobson(合信).The translation “sweet meat” is not faithful to the original meaning of “pancreas”,but is a term coined by Hobson based on his personal habits,and the word “sweet” appeared by chance.However,in the decades since the term “sweet meat” became popular,Chinese medicine practitioners,such as Tang Zonghai(唐宗海),reinterpreted it by drawing new medical illustrations for “sweet meat” and giving new connotations to the word “sweet”.This discussion and interpretation of “sweet meat” in modern China,particularly among Chinese medicine professionals,is not only a dissemination and interpretation of the knowledge of “pancreas”,but also a construction of knowledge around the term “sweet meat”.展开更多
Identifying rare patterns for medical diagnosis is a challenging task due to heterogeneity and the volume of data.Data summarization can create a concise version of the original data that can be used for effective dia...Identifying rare patterns for medical diagnosis is a challenging task due to heterogeneity and the volume of data.Data summarization can create a concise version of the original data that can be used for effective diagnosis.In this paper,we propose an ensemble summarization method that combines clustering and sampling to create a summary of the original data to ensure the inclusion of rare patterns.To the best of our knowledge,there has been no such technique available to augment the performance of anomaly detection techniques and simultaneously increase the efficiency of medical diagnosis.The performance of popular anomaly detection algorithms increases significantly in terms of accuracy and computational complexity when the summaries are used.Therefore,the medical diagnosis becomes more effective,and our experimental results reflect that the combination of the proposed summarization scheme and all underlying algorithms used in this paper outperforms the most popular anomaly detection techniques.展开更多
Ioannis Solos Ph.D.,M.D.(China),L.Ac.currently serves as President and CEO at the Saint George Clinic and Research Institute,Scottsdale,AZ.,and Associate Editor for Chinese Medicine and Culture.Professor Solos has ear...Ioannis Solos Ph.D.,M.D.(China),L.Ac.currently serves as President and CEO at the Saint George Clinic and Research Institute,Scottsdale,AZ.,and Associate Editor for Chinese Medicine and Culture.Professor Solos has earned his Master of Medicine in Traditional Diagnosis at the Beijing University of Chinese Medicine,and his Medical Ph.D.in Chinese and Western Integrative Medicine at the Jinan University in Guangzhou.He practices and teaches integrative clinical medicine,Jing Fang(经方TCM formulas),martial lineage acupuncture,and his personalized style of“tendon and fascia reconditioning manipulations for bone and joint disease”.展开更多
Objectives: This study aims to investigate the status of knowledge, attitude and practice (KAP) of oral health among medical undergraduate students, and provide reference for implementing oral health interventions. Me...Objectives: This study aims to investigate the status of knowledge, attitude and practice (KAP) of oral health among medical undergraduate students, and provide reference for implementing oral health interventions. Methods: A total of 528 undergraduate students enrolled in Fuzhou Medical College from February 2023 to September 2023 were selected as the research subjects. Their oral health KAP were investigated, and the oral health behavior habits of different types of medical students were compared, and possible influencing factors were analyzed. Results: The total awareness rate of oral health knowledge among medical students is 77.0%, with an average score of 3.85 ± 1.16 points. The overall positive rate of oral health attitudes among medical students is 80.0%, with an average score of 3.19 ± 0.72 points. The total qualified rate of oral health behavior is 65.9%, with an average score of 4.61 ± 1.23 points. The scores of oral health knowledge, attitudes, and behaviors among medical students are related to gender, major, smoking status, and oral health status. The frequency of brushing teeth in the female group was higher than that in the male group, while the habit of brushing teeth before bedtime and the frequency of timely replacement of toothbrushes when deformed were lower, with statistical significance (p 0.05). The frequency of timely replacement of toothbrushes varies among medical students from different majors, and the difference is statistically significant (p 0.05). People who have a habit of eating hot and cold food have a higher frequency of brushing their teeth every day, and the difference is statistically significant (p 0.05). Non smokers have a better habit of brushing their teeth before bedtime and a higher frequency of timely replacement when their toothbrush deforms, with a statistically significant difference (p 0.05). The frequency of using fluoride toothpaste or medicated toothpaste, having a habit of unilateral chewing, and timely replacement of toothbrushes when deformed in patients with existing oral problems is higher than that of those without oral problems, and the difference is statistically significant (p 0.05). Conclusion: The knowledge, attitude, and behavior of oral health among medical students in this school are above average. Students with different genders, dietary and smoking habits, and oral health status have different oral health behavioral habits. It is recommended to include oral health education in mandatory courses for various medical majors.展开更多
Background: Hospital Acquired Infections (HAIs) remain a common cause of death, functional disability, emotional suffering and economic burden among hospitalized patients. Knowledge of HAIs is important in its prevent...Background: Hospital Acquired Infections (HAIs) remain a common cause of death, functional disability, emotional suffering and economic burden among hospitalized patients. Knowledge of HAIs is important in its prevention and control. This study seeks to assess the knowledge of Hospital Acquired Infections (HAIs) among medical students in a Tertiary Hospital in Jos North Local Government Area, Plateau State, Nigeria. Methods: This was a descriptive cross-sectional study done in October 2019 among clinical medical students using a Multistage sampling technique. Data was collected using a self-administered structured questionnaire and analyzed using the IBM SPSS 20 (Statistical Package for the Social Sciences). Ethical approval was granted by Bingham University Teaching Hospital, Ethics Committee, Jos, Plateau State. Results: A total of 219 students in the clinical arm of the College of Medicine and Health Sciences were selected. A higher proportion (97.7%) of respondents knew about Hospital Acquired Infections and 85.4% knew that Hospital Acquired infections occur in the hospital, and (86.3%) considered patients contagious with half (58.9%) considered patients as the most important source of HAIs, followed by care givers (13.2%), then doctors including medical students and interns (10.0%) and lastly nurses (8.7%). The majority of respondents (70.8%) considered Surgical Wound Infections to be the most commonly occurring HAI, followed by UTIs (69.9%), RTIs (61.2%), BSIs (37.0%) and others (0.9%). The clinical thermometer was the instrument that most commonly transmits HAIs (82.6%), then followed by stethoscope (62.1%), white coats (53.9%), and blood pressure cuff (51.1%). Most respondents knew the infectious substances, like blood (96.3%), nasal discharge (82.6%), saliva (85.3%), and faeces (79.4%) transmitted HAIs, 72.6% of the respondents said that they were aware of the recommended hand washing techniques by WHO. Conclusion: The majority of students 91.3% had good knowledge while 8.7% had poor knowledge of HAIs. Lower classes had more respondents with poor knowledge. This finding was statistically significant (p = 0.002, Chi-square 12.819). Students are encouraged to keep up the level of knowledge they have about HAIs. These students can help improve the knowledge of those whose knowledge level is low. Government and NGOs should support sponsorship for capacity-building events targeted at HAIs for healthcare workers and medical students.展开更多
Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising techniqu...Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising technique for the fabrication of personalized medical devices or even patient-specific tissue constructs.Each type of 3D printing technique has its unique advantages and limitations,and the selection of a suitable 3D printing technique is highly dependent on its intended application.In this review paper,we present and highlight some of the critical processes(printing parameters,build orientation,build location,and support structures),material(batch-to-batch consistency,recycling,protein adsorption,biocompatibility,and degradation properties),and regulatory considerations(sterility and mechanical properties)for 3D printing of personalized medical devices.The goal of this review paper is to provide the readers with a good understanding of the various key considerations(process,material,and regulatory)in 3D printing,which are critical for the fabrication of improved patient-specific 3D printed medical devices and tissue constructs.展开更多
The Internet of Multimedia Things(IoMT)refers to a network of interconnected multimedia devices that communicate with each other over the Internet.Recently,smart healthcare has emerged as a significant application of ...The Internet of Multimedia Things(IoMT)refers to a network of interconnected multimedia devices that communicate with each other over the Internet.Recently,smart healthcare has emerged as a significant application of the IoMT,particularly in the context of knowledge‐based learning systems.Smart healthcare systems leverage knowledge‐based learning to become more context‐aware,adaptable,and auditable while maintain-ing the ability to learn from historical data.In smart healthcare systems,devices capture images,such as X‐rays,Magnetic Resonance Imaging.The security and integrity of these images are crucial for the databases used in knowledge‐based learning systems to foster structured decision‐making and enhance the learning abilities of AI.Moreover,in knowledge‐driven systems,the storage and transmission of HD medical images exert a burden on the limited bandwidth of the communication channel,leading to data trans-mission delays.To address the security and latency concerns,this paper presents a lightweight medical image encryption scheme utilising bit‐plane decomposition and chaos theory.The results of the experiment yield entropy,energy,and correlation values of 7.999,0.0156,and 0.0001,respectively.This validates the effectiveness of the encryption system proposed in this paper,which offers high‐quality encryption,a large key space,key sensitivity,and resistance to statistical attacks.展开更多
Gliomas have the highest mortality rate of all brain tumors.Correctly classifying the glioma risk period can help doctors make reasonable treatment plans and improve patients’survival rates.This paper proposes a hier...Gliomas have the highest mortality rate of all brain tumors.Correctly classifying the glioma risk period can help doctors make reasonable treatment plans and improve patients’survival rates.This paper proposes a hierarchical multi-scale attention feature fusion medical image classification network(HMAC-Net),which effectively combines global features and local features.The network framework consists of three parallel layers:The global feature extraction layer,the local feature extraction layer,and the multi-scale feature fusion layer.A linear sparse attention mechanism is designed in the global feature extraction layer to reduce information redundancy.In the local feature extraction layer,a bilateral local attention mechanism is introduced to improve the extraction of relevant information between adjacent slices.In the multi-scale feature fusion layer,a channel fusion block combining convolutional attention mechanism and residual inverse multi-layer perceptron is proposed to prevent gradient disappearance and network degradation and improve feature representation capability.The double-branch iterative multi-scale classification block is used to improve the classification performance.On the brain glioma risk grading dataset,the results of the ablation experiment and comparison experiment show that the proposed HMAC-Net has the best performance in both qualitative analysis of heat maps and quantitative analysis of evaluation indicators.On the dataset of skin cancer classification,the generalization experiment results show that the proposed HMAC-Net has a good generalization effect.展开更多
This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates...This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates the coexistence of multiple firing patterns through phase diagrams,Lyapunov exponents(LEs),and bifurcation diagrams.Secondly,the parameter related firing behaviors are described through two-parameter bifurcation diagrams.Subsequently,local attraction basins reveal multi-stability phenomena related to initial values.Moreover,the proposed model is implemented on a microcomputer-based ARM platform,and the experimental results correspond to the numerical simulations.Finally,the article explores the application of digital watermarking for medical images,illustrating its features of excellent imperceptibility,extensive key space,and robustness against attacks including noise and cropping.展开更多
文摘In order to help older adults with cardiovascular disease navigate complex decisions, clinicians must know tenets of medical ethics and have good communication skills. The elements of decision making capacity and informed consent are reviewed, using relevant clinical ex- amples to illustrate the basic concepts. The shared decision making model, by which clinician and patient work together to determine the plan of care, is described. Useful communication techniques to implement shared decision making are suggested.
基金the financial support of the National Key Research and Development Program of China(2020AAA0108100)the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Shanghai Gaofeng and Gaoyuan Project for University Academic Program Development for funding。
文摘Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.
文摘This editorial highlights the remarkable advancements in medical treatment strategies for pancreatic neuroendocrine tumors(pan-NETs),emphasizing tailored approaches for specific subtypes.Cytoreductive surgery and somatostatin analogs(SSAs)play pivotal roles in managing tumors,while palliative options such as molecular targeted therapy,peptide receptor radionuclide therapy,and chemotherapy are reserved for SSA-refractory patients.Gastrinomas,insul-inomas,glucagonomas,carcinoid tumors and VIPomas necessitate distinct thera-peutic strategies.Understanding the genetic basis of pan-NETs and exploring immunotherapies could lead to promising avenues for future research.This review underscores the evolving landscape of pan-NET treatment,offering renewed hope and improved outcomes for patients facing this complex disease.
基金the Deanship of Scientific Research at Umm Al-Qura University(Grant Code:22UQU4310396DSR65).
文摘Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is also beneficial for three parametric data.By Pythagorean fuzzy sets,the difference is calculated only between two parameters(membership and non-membership).According to human thoughts,fuzzy data can be found in three parameters(membership uncertainty,and non-membership).So,to make a compromise decision,comparing Sq-LDFSs is essential.Existing measures of different fuzzy sets do,however,can have several flaws that can lead to counterintuitive results.For instance,they treat any increase or decrease in the membership degree as the same as the non-membership degree because the uncertainty does not change,even though each parameter has a different implication.In the Sq-LDFSs comparison,this research develops the differentialmeasure(DFM).Themain goal of the DFM is to cover the unfair arguments that come from treating different types of FSs opposing criteria equally.Due to their relative positions in the attribute space and the similarity of their membership and non-membership degrees,two Sq-LDFSs formthis preference connectionwhen the uncertainty remains same in both sets.According to the degree of superiority or inferiority,two Sq-LDFSs are shown as identical,equivalent,superior,or inferior over one another.The suggested DFM’s fundamental characteristics are provided.Based on the newly developed DFM,a unique approach tomultiple criterion group decision-making is offered.Our suggestedmethod verifies the novel way of calculating the expert weights for Sq-LDFSS as in PFSs.Our proposed technique in three parameters is applied to evaluate solid-state drives and choose the optimum photovoltaic cell in two applications by taking uncertainty parameter zero.The method’s applicability and validity shown by the findings are contrasted with those obtained using various other existing approaches.To assess its stability and usefulness,a sensitivity analysis is done.
基金supported in part by the Start-Up Grant-Nanyang Assistant Professorship Grant of Nanyang Technological Universitythe Agency for Science,Technology and Research(A*STAR)under Advanced Manufacturing and Engineering(AME)Young Individual Research under Grant(A2084c0156)+2 种基金the MTC Individual Research Grant(M22K2c0079)the ANR-NRF Joint Grant(NRF2021-NRF-ANR003 HM Science)the Ministry of Education(MOE)under the Tier 2 Grant(MOE-T2EP50222-0002)。
文摘While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.
基金supported by the National Key Research,Development Program of China (2020AAA0103404)the Beijing Nova Program (20220484077)the National Natural Science Foundation of China (62073323)。
文摘Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.
基金This work was funded by the National Natural Science Foundation of China Nos.U22A2099,61966009,62006057the Graduate Innovation Program No.YCSW2022286.
文摘Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values or make ethical decisions,they may not meet the expectations of humans.Traditionally,an ethical decision-making framework is constructed by rule-based or statistical approaches.In this paper,we propose an ethical decision-making framework based on incremental ILP(Inductive Logic Programming),which can overcome the brittleness of rule-based approaches and little interpretability of statistical approaches.As the current incremental ILP makes it difficult to solve conflicts,we propose a novel ethical decision-making framework considering conflicts in this paper,which adopts our proposed incremental ILP system.The framework consists of two processes:the learning process and the deduction process.The first process records bottom clauses with their score functions and learns rules guided by the entailment and the score function.The second process obtains an ethical decision based on the rules.In an ethical scenario about chatbots for teenagers’mental health,we verify that our framework can learn ethical rules and make ethical decisions.Besides,we extract incremental ILP from the framework and compare it with the state-of-the-art ILP systems based on ASP(Answer Set Programming)focusing on conflict resolution.The results of comparisons show that our proposed system can generate better-quality rules than most other systems.
文摘Objective:To provide a comprehensive review on the existing literature on medical management of urolithiasis.Methods:A thorough literature review was performed using Medline,PubMed/PMC,Embase,and the Cochrane Database of Systematic Reviews up to December 2022 to identify publications on the medical management of urolithiasis.Studies that assessed dietary and pharmacologic management of urolithiasis were reviewed;studies on medical expulsive therapy were not included in this review.Results:Medical management of urolithiasis ranges from the prophylactic management of kidney stone disease to dissolution therapies.While most treatment concepts have been long established,large randomized controlled trials are scarce.Dietary modification and increased fluid intake remain cornerstones in the conservative management of urolithiasis.A major limitation for medical management of urolithiasis is poor patient compliance.Conclusion:Medical management of urolithiasis is more important in patients with recurrent urolithiasis and patients with metabolic abnormalities putting them at higher risk of developing stones.Although medical management can be effective in limiting stone recurrence,medical interventions often fail due to poor compliance.
基金supported by the National Natural Science Foundation of China (No.72071150).
文摘Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to objectively predict and identify strokes,this paper proposes a new stroke risk assessment decision-making model named Logistic-AdaBoost(Logistic-AB)based on machine learning.First,the categorical boosting(CatBoost)method is used to perform feature selection for all features of stroke,and 8 main features are selected to form a new index evaluation system to predict the risk of stroke.Second,the borderline synthetic minority oversampling technique(SMOTE)algorithm is applied to transform the unbalanced stroke dataset into a balanced dataset.Finally,the stroke risk assessment decision-makingmodel Logistic-AB is constructed,and the overall prediction performance of this new model is evaluated by comparing it with ten other similar models.The comparison results show that the new model proposed in this paper performs better than the two single algorithms(logistic regression and AdaBoost)on the four indicators of recall,precision,F1 score,and accuracy,and the overall performance of the proposed model is better than that of common machine learning algorithms.The Logistic-AB model presented in this paper can more accurately predict patients’stroke risk.
文摘Background A medical content-based image retrieval(CBIR)system is designed to retrieve images from large imaging repositories that are visually similar to a user′s query image.CBIR is widely used in evidence-based diagnosis,teaching,and research.Although the retrieval accuracy has largely improved,there has been limited development toward visualizing important image features that indicate the similarity of retrieved images.Despite the prevalence of 3D volumetric data in medical imaging such as computed tomography(CT),current CBIR systems still rely on 2D cross-sectional views for the visualization of retrieved images.Such 2D visualization requires users to browse through the image stacks to confirm the similarity of the retrieved images and often involves mental reconstruction of 3D information,including the size,shape,and spatial relations of multiple structures.This process is time-consuming and reliant on users'experience.Methods In this study,we proposed an importance-aware 3D volume visualization method.The rendering parameters were automatically optimized to maximize the visibility of important structures that were detected and prioritized in the retrieval process.We then integrated the proposed visualization into a CBIR system,thereby complementing the 2D cross-sectional views for relevance feedback and further analyses.Results Our preliminary results demonstrate that 3D visualization can provide additional information using multimodal positron emission tomography and computed tomography(PETCT)images of a non-small cell lung cancer dataset.
基金Supported by the Brazilian National Council for Scientific and Technological Development(CNPq),No.312499/2022-1São Paulo Research Foundation(FAPESP),No.2023/00823-9,and No.2023/01251-9.
文摘The high rates of depression,burnout,and increased risk of suicide among medical students,residents,and physicians in comparison with other careers signal a mental health crisis within our profession.We contend that this crisis coupled with the inadequate acquisition of interpersonal skills during medical education results from the interaction between a challenging environment and the mental capital of individuals.Additionally,we posit that mindfulness-based practices are instrumental for the development of major components of mental capital,such as resilience,flexibility of mind,and learning skills,while also serving as a pathway to enhance empathy,compassion,self-awareness,conflict resolution,and relational abilities.Importantly,the evidence base supporting the effectiveness of mindfulness-based interventions has been increasing over the years,and a growing number of medical schools have already integrated mindfulness into their curricula.While we acknowledge that mindfulness is not a panacea for all educational and mental health problems in this field,we argue that there is currently an unprecedented opportunity to gather momentum,spread and study mindfulness-based programs in medical schools around the world as a way to address some longstanding shortcomings of the medical profession and the health and educational systems upon which it is rooted.
基金financed by the grant from the Youth Fund for Humanities and Social Sciences Research of the Ministry of Education (No. 19YJCZH040)。
文摘The pancreas is neither part of the five Zang organs(五脏) nor the six Fu organs(六腑).Thus,it has received little attention in Chinese medical literature.In the late 19th century,medical missionaries in China started translating and introducing anatomical and physiological knowledge about the pancreas.As for the word pancreas,an early and influential translation was “sweet meat”(甜肉),proposed by Benjamin Hobson(合信).The translation “sweet meat” is not faithful to the original meaning of “pancreas”,but is a term coined by Hobson based on his personal habits,and the word “sweet” appeared by chance.However,in the decades since the term “sweet meat” became popular,Chinese medicine practitioners,such as Tang Zonghai(唐宗海),reinterpreted it by drawing new medical illustrations for “sweet meat” and giving new connotations to the word “sweet”.This discussion and interpretation of “sweet meat” in modern China,particularly among Chinese medicine professionals,is not only a dissemination and interpretation of the knowledge of “pancreas”,but also a construction of knowledge around the term “sweet meat”.
文摘Identifying rare patterns for medical diagnosis is a challenging task due to heterogeneity and the volume of data.Data summarization can create a concise version of the original data that can be used for effective diagnosis.In this paper,we propose an ensemble summarization method that combines clustering and sampling to create a summary of the original data to ensure the inclusion of rare patterns.To the best of our knowledge,there has been no such technique available to augment the performance of anomaly detection techniques and simultaneously increase the efficiency of medical diagnosis.The performance of popular anomaly detection algorithms increases significantly in terms of accuracy and computational complexity when the summaries are used.Therefore,the medical diagnosis becomes more effective,and our experimental results reflect that the combination of the proposed summarization scheme and all underlying algorithms used in this paper outperforms the most popular anomaly detection techniques.
文摘Ioannis Solos Ph.D.,M.D.(China),L.Ac.currently serves as President and CEO at the Saint George Clinic and Research Institute,Scottsdale,AZ.,and Associate Editor for Chinese Medicine and Culture.Professor Solos has earned his Master of Medicine in Traditional Diagnosis at the Beijing University of Chinese Medicine,and his Medical Ph.D.in Chinese and Western Integrative Medicine at the Jinan University in Guangzhou.He practices and teaches integrative clinical medicine,Jing Fang(经方TCM formulas),martial lineage acupuncture,and his personalized style of“tendon and fascia reconditioning manipulations for bone and joint disease”.
文摘Objectives: This study aims to investigate the status of knowledge, attitude and practice (KAP) of oral health among medical undergraduate students, and provide reference for implementing oral health interventions. Methods: A total of 528 undergraduate students enrolled in Fuzhou Medical College from February 2023 to September 2023 were selected as the research subjects. Their oral health KAP were investigated, and the oral health behavior habits of different types of medical students were compared, and possible influencing factors were analyzed. Results: The total awareness rate of oral health knowledge among medical students is 77.0%, with an average score of 3.85 ± 1.16 points. The overall positive rate of oral health attitudes among medical students is 80.0%, with an average score of 3.19 ± 0.72 points. The total qualified rate of oral health behavior is 65.9%, with an average score of 4.61 ± 1.23 points. The scores of oral health knowledge, attitudes, and behaviors among medical students are related to gender, major, smoking status, and oral health status. The frequency of brushing teeth in the female group was higher than that in the male group, while the habit of brushing teeth before bedtime and the frequency of timely replacement of toothbrushes when deformed were lower, with statistical significance (p 0.05). The frequency of timely replacement of toothbrushes varies among medical students from different majors, and the difference is statistically significant (p 0.05). People who have a habit of eating hot and cold food have a higher frequency of brushing their teeth every day, and the difference is statistically significant (p 0.05). Non smokers have a better habit of brushing their teeth before bedtime and a higher frequency of timely replacement when their toothbrush deforms, with a statistically significant difference (p 0.05). The frequency of using fluoride toothpaste or medicated toothpaste, having a habit of unilateral chewing, and timely replacement of toothbrushes when deformed in patients with existing oral problems is higher than that of those without oral problems, and the difference is statistically significant (p 0.05). Conclusion: The knowledge, attitude, and behavior of oral health among medical students in this school are above average. Students with different genders, dietary and smoking habits, and oral health status have different oral health behavioral habits. It is recommended to include oral health education in mandatory courses for various medical majors.
文摘Background: Hospital Acquired Infections (HAIs) remain a common cause of death, functional disability, emotional suffering and economic burden among hospitalized patients. Knowledge of HAIs is important in its prevention and control. This study seeks to assess the knowledge of Hospital Acquired Infections (HAIs) among medical students in a Tertiary Hospital in Jos North Local Government Area, Plateau State, Nigeria. Methods: This was a descriptive cross-sectional study done in October 2019 among clinical medical students using a Multistage sampling technique. Data was collected using a self-administered structured questionnaire and analyzed using the IBM SPSS 20 (Statistical Package for the Social Sciences). Ethical approval was granted by Bingham University Teaching Hospital, Ethics Committee, Jos, Plateau State. Results: A total of 219 students in the clinical arm of the College of Medicine and Health Sciences were selected. A higher proportion (97.7%) of respondents knew about Hospital Acquired Infections and 85.4% knew that Hospital Acquired infections occur in the hospital, and (86.3%) considered patients contagious with half (58.9%) considered patients as the most important source of HAIs, followed by care givers (13.2%), then doctors including medical students and interns (10.0%) and lastly nurses (8.7%). The majority of respondents (70.8%) considered Surgical Wound Infections to be the most commonly occurring HAI, followed by UTIs (69.9%), RTIs (61.2%), BSIs (37.0%) and others (0.9%). The clinical thermometer was the instrument that most commonly transmits HAIs (82.6%), then followed by stethoscope (62.1%), white coats (53.9%), and blood pressure cuff (51.1%). Most respondents knew the infectious substances, like blood (96.3%), nasal discharge (82.6%), saliva (85.3%), and faeces (79.4%) transmitted HAIs, 72.6% of the respondents said that they were aware of the recommended hand washing techniques by WHO. Conclusion: The majority of students 91.3% had good knowledge while 8.7% had poor knowledge of HAIs. Lower classes had more respondents with poor knowledge. This finding was statistically significant (p = 0.002, Chi-square 12.819). Students are encouraged to keep up the level of knowledge they have about HAIs. These students can help improve the knowledge of those whose knowledge level is low. Government and NGOs should support sponsorship for capacity-building events targeted at HAIs for healthcare workers and medical students.
文摘Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising technique for the fabrication of personalized medical devices or even patient-specific tissue constructs.Each type of 3D printing technique has its unique advantages and limitations,and the selection of a suitable 3D printing technique is highly dependent on its intended application.In this review paper,we present and highlight some of the critical processes(printing parameters,build orientation,build location,and support structures),material(batch-to-batch consistency,recycling,protein adsorption,biocompatibility,and degradation properties),and regulatory considerations(sterility and mechanical properties)for 3D printing of personalized medical devices.The goal of this review paper is to provide the readers with a good understanding of the various key considerations(process,material,and regulatory)in 3D printing,which are critical for the fabrication of improved patient-specific 3D printed medical devices and tissue constructs.
文摘The Internet of Multimedia Things(IoMT)refers to a network of interconnected multimedia devices that communicate with each other over the Internet.Recently,smart healthcare has emerged as a significant application of the IoMT,particularly in the context of knowledge‐based learning systems.Smart healthcare systems leverage knowledge‐based learning to become more context‐aware,adaptable,and auditable while maintain-ing the ability to learn from historical data.In smart healthcare systems,devices capture images,such as X‐rays,Magnetic Resonance Imaging.The security and integrity of these images are crucial for the databases used in knowledge‐based learning systems to foster structured decision‐making and enhance the learning abilities of AI.Moreover,in knowledge‐driven systems,the storage and transmission of HD medical images exert a burden on the limited bandwidth of the communication channel,leading to data trans-mission delays.To address the security and latency concerns,this paper presents a lightweight medical image encryption scheme utilising bit‐plane decomposition and chaos theory.The results of the experiment yield entropy,energy,and correlation values of 7.999,0.0156,and 0.0001,respectively.This validates the effectiveness of the encryption system proposed in this paper,which offers high‐quality encryption,a large key space,key sensitivity,and resistance to statistical attacks.
基金Major Program of National Natural Science Foundation of China(NSFC12292980,NSFC12292984)National Key R&D Program of China(2023YFA1009000,2023YFA1009004,2020YFA0712203,2020YFA0712201)+2 种基金Major Program of National Natural Science Foundation of China(NSFC12031016)Beijing Natural Science Foundation(BNSFZ210003)Department of Science,Technology and Information of the Ministry of Education(8091B042240).
文摘Gliomas have the highest mortality rate of all brain tumors.Correctly classifying the glioma risk period can help doctors make reasonable treatment plans and improve patients’survival rates.This paper proposes a hierarchical multi-scale attention feature fusion medical image classification network(HMAC-Net),which effectively combines global features and local features.The network framework consists of three parallel layers:The global feature extraction layer,the local feature extraction layer,and the multi-scale feature fusion layer.A linear sparse attention mechanism is designed in the global feature extraction layer to reduce information redundancy.In the local feature extraction layer,a bilateral local attention mechanism is introduced to improve the extraction of relevant information between adjacent slices.In the multi-scale feature fusion layer,a channel fusion block combining convolutional attention mechanism and residual inverse multi-layer perceptron is proposed to prevent gradient disappearance and network degradation and improve feature representation capability.The double-branch iterative multi-scale classification block is used to improve the classification performance.On the brain glioma risk grading dataset,the results of the ablation experiment and comparison experiment show that the proposed HMAC-Net has the best performance in both qualitative analysis of heat maps and quantitative analysis of evaluation indicators.On the dataset of skin cancer classification,the generalization experiment results show that the proposed HMAC-Net has a good generalization effect.
文摘This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates the coexistence of multiple firing patterns through phase diagrams,Lyapunov exponents(LEs),and bifurcation diagrams.Secondly,the parameter related firing behaviors are described through two-parameter bifurcation diagrams.Subsequently,local attraction basins reveal multi-stability phenomena related to initial values.Moreover,the proposed model is implemented on a microcomputer-based ARM platform,and the experimental results correspond to the numerical simulations.Finally,the article explores the application of digital watermarking for medical images,illustrating its features of excellent imperceptibility,extensive key space,and robustness against attacks including noise and cropping.