期刊文献+
共找到7,164篇文章
< 1 2 250 >
每页显示 20 50 100
Congruent Feature Selection Method to Improve the Efficacy of Machine Learning-Based Classification in Medical Image Processing
1
作者 Mohd Anjum Naoufel Kraiem +2 位作者 Hong Min Ashit Kumar Dutta Yousef Ibrahim Daradkeh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期357-384,共28页
Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp... Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset. 展开更多
关键词 Computer vision feature selection machine learning region detection texture analysis image classification medical images
下载PDF
Non-invasively differentiate non-alcoholic steatohepatitis by visualizing hepatic integrin αvβ3 expression with a targeted molecular imaging modality
2
作者 Xiao-Quan Huang Ling Wu +7 位作者 Chun-Yan Xue Chen-Yi Rao Qing-Qing Fang Ying Chen Cao Xie Sheng-Xiang Rao Shi-Yao Chen Feng Li 《World Journal of Hepatology》 2024年第11期1290-1305,共16页
BACKGROUND Non-invasive methods to diagnose non-alcoholic steatohepatitis(NASH),an inflammatory subtype of non-alcoholic fatty liver disease(NAFLD),are currently unavailable.AIM To develop an integrin αvβ3-targeted ... BACKGROUND Non-invasive methods to diagnose non-alcoholic steatohepatitis(NASH),an inflammatory subtype of non-alcoholic fatty liver disease(NAFLD),are currently unavailable.AIM To develop an integrin αvβ3-targeted molecular imaging modality to differentiate NASH.METHODS Integrinαvβ3 expression was assessed in Human LO2 hepatocytes Scultured with palmitic and oleic acids(FFA).Hepatic integrinαvβ3 expression was analyzed in rabbits fed a high-fat diet(HFD)and in rats fed a high-fat,high-carbohydrate diet(HFCD).After synthesis,cyclic arginine-glycine-aspartic acid peptide(cRGD)was labeled with gadolinium(Gd)and used as a contrast agent in magnetic resonance imaging(MRI)performed on mice fed with HFCD.RESULTS Integrin αvβ3 was markedly expressed on FFA-cultured hepatocytes,unlike the control hepatocytes.Hepatic integrin αvβ3 expression significantly increased in both HFD-fed rabbits and HFCD-fed rats as simple fatty liver(FL)progressed to steatohepatitis.The distribution of integrinαvβ3 in the liver of NASH cases largely overlapped with albumin-positive staining areas.In comparison to mice with simple FL,the relative liver MRI-T1 signal value at 60 minutes post-injection of Gd-labeled cRGD was significantly increased in mice with steatohepatitis(P<0.05),showing a positive correlation with the NAFLD activity score(r=0.945;P<0.01).Hepatic integrin αvβ3 expression was significantly upregulated during NASH development,with hepatocytes being the primary cells expressing integrin αvβ3.CONCLUSION After using Gd-labeled cRGD as a tracer,NASH was successfully distinguished by visualizing hepatic integrin αvβ3 expression with MRI. 展开更多
关键词 Non-alcoholic steatohepatitis Cyclic peptides Magnetic resonance imaging non-invasive diagnosis Hepatic integrinαvβ3
下载PDF
Evaluation of Medical Prescribers’ Theoretical Knowledge on Medical Imaging in the Northern Region of Burkina Faso
3
作者 Some Milckisédek Judicaël Marouruana Ouedraogo Pakisba Ali +5 位作者 Tankoano Aïda Ida Savadogo Habibou Kindo Bassirou Ouedraogo Nina-Astrid Bamouni Yomboé Abel Diallo Ousseini 《Open Journal of Radiology》 2024年第2期33-41,共9页
Introduction: Medical imaging is a medical specialty that involves producing images of the human body and interpreting them for diagnostic, therapeutic purposes, and for monitoring the progress of pathologies. We aime... Introduction: Medical imaging is a medical specialty that involves producing images of the human body and interpreting them for diagnostic, therapeutic purposes, and for monitoring the progress of pathologies. We aimed to assess the theoretical knowledge of doctors and interns in medical imaging in the northern region of Burkina Faso. Methodology: This was a descriptive cross-sectional survey based on a self-administered questionnaire. Prescribers knowledge was estimated based on scores derived from questionnaire responses. Results: We collected 106 questionnaires out of 163, i.e. a participation rate of 65.03%. The average knowledge score was 81.71% for the contribution of medical imaging to patient management. It was 60.02% for the indications/counter-indications of radiological examinations and 72.56% for the risks associated with exposure to radiation during these examinations. The score was 59.83% for the methods used to select the appropriate radiological examination. As regards the completeness of the clinical and biological information on the forms requesting imaging examinations, the score was 96.65%. Specialist doctors had the highest overall level of knowledge (74.68%). Conclusion: Improved technical facilities, good initial and in-service training, and interdisciplinary collaboration will help to ensure that imaging tests are properly prescribed, leading to better patient care. 展开更多
关键词 Theoretical Knowledge medical imaging Northern Region Burkina Faso
下载PDF
Relationship between pancreatic morphological changes and diabetes in autoimmune pancreatitis:Multimodal medical imaging assessment has important potential
4
作者 Qing-Biao Zhang Dan Liu +2 位作者 Jun-Bang Feng Chun-Qi Du Chuan-Ming Li 《World Journal of Radiology》 2024年第11期703-707,共5页
Autoimmune pancreatitis(AIP)is a special type of chronic pancreatitis with cli-nical symptoms of obstructive jaundice and abdominal discomfort;this condition is caused by autoimmunity and marked by pancreatic fibrosis... Autoimmune pancreatitis(AIP)is a special type of chronic pancreatitis with cli-nical symptoms of obstructive jaundice and abdominal discomfort;this condition is caused by autoimmunity and marked by pancreatic fibrosis and dysfunction.Previous studies have revealed a close relationship between early pancreatic atrophy and the incidence rate of diabetes in type 1 AIP patients receiving steroid treatment.Shimada et al performed a long-term follow-up study and reported that the pancreatic volume(PV)of these patients initially exponentially decreased but then slowly decreased,which was considered to be an important factor related to diabetes;moreover,serum IgG4 levels were positively correlated with PV during follow-up.In this letter,regarding the original study presented by Shimada et al,we present our insights and discuss how multimodal medical imaging and arti-ficial intelligence can be used to better assess the relationship between pancreatic morphological changes and diabetes in patients with AIP. 展开更多
关键词 Autoimmune pancreatitis DIABETES Pancreatic morphological changes Multimodal medical imaging Artificial intelligence
下载PDF
The Artificial Intelligence-Enabled Medical Imaging:Today and Its Future 被引量:6
5
作者 史颖欢 王乾 《Chinese Medical Sciences Journal》 CAS CSCD 2019年第2期71-75,共5页
Medical imaging is now being reshaped by artificial intelligence (AI) and progressing rapidly toward future.In this article,we review the recent progress of AI-enabled medical imaging.Firstly,we briefly review the bac... Medical imaging is now being reshaped by artificial intelligence (AI) and progressing rapidly toward future.In this article,we review the recent progress of AI-enabled medical imaging.Firstly,we briefly review the background about AI in its way of evolution.Then,we discuss the recent successes of AI in different medical imaging tasks,especially in image segmentation,registration,detection and recognition.Also,we illustrate several representative applications of AI-enabled medical imaging to show its advantage in real scenario,which includes lung nodule in chest CT,neuroimaging,mammography,and etc.Finally,we report the way of human-machine interaction.We believe that,in the future,AI will not only change the traditional way of medical imaging,but also improve the clinical routines of medical care and enable many aspects of the medical society. 展开更多
关键词 medical imaging artificial INTELLIGENCE deep learning imagE SEGMENTATION imagE REGISTRATION imagE detection imagE recognition
下载PDF
Reconstruction of Knowledge and Medical Images in the Convergence of Chinese and Western Medicine:Taking “Sweet Meat” as an Example 被引量:1
6
作者 GU Xiaoyang 《Chinese Medicine and Culture》 2024年第3期204-212,共9页
The pancreas is neither part of the five Zang organs(五脏) nor the six Fu organs(六腑).Thus,it has received little attention in Chinese medical literature.In the late 19th century,medical missionaries in China started... The pancreas is neither part of the five Zang organs(五脏) nor the six Fu organs(六腑).Thus,it has received little attention in Chinese medical literature.In the late 19th century,medical missionaries in China started translating and introducing anatomical and physiological knowledge about the pancreas.As for the word pancreas,an early and influential translation was “sweet meat”(甜肉),proposed by Benjamin Hobson(合信).The translation “sweet meat” is not faithful to the original meaning of “pancreas”,but is a term coined by Hobson based on his personal habits,and the word “sweet” appeared by chance.However,in the decades since the term “sweet meat” became popular,Chinese medicine practitioners,such as Tang Zonghai(唐宗海),reinterpreted it by drawing new medical illustrations for “sweet meat” and giving new connotations to the word “sweet”.This discussion and interpretation of “sweet meat” in modern China,particularly among Chinese medicine professionals,is not only a dissemination and interpretation of the knowledge of “pancreas”,but also a construction of knowledge around the term “sweet meat”. 展开更多
关键词 medical terminology Sweet meat medical missionaries PANCREAS History of images
下载PDF
Advancements in non-invasive diagnosis of gastric cancer
7
作者 Zhen Wang Qi Wu 《World Journal of Gastroenterology》 2025年第6期14-19,共6页
Gastric cancer(GC),a multifaceted and highly aggressive malignancy,represents challenging healthcare burdens globally,with a high incidence and mortality rate.Although endoscopy,combined with histological examination,... Gastric cancer(GC),a multifaceted and highly aggressive malignancy,represents challenging healthcare burdens globally,with a high incidence and mortality rate.Although endoscopy,combined with histological examination,is the gold stan-dard for GC diagnosis,its high cost,invasiveness,and specialized requirements hinder widespread use for screening.With the emergence of innovative techno-logies such as advanced imaging,liquid biopsy,and breath tests,the landscape of GC diagnosis is poised for radical transformation,becoming more accessible,less invasive,and more efficient.As the non-invasive diagnostic techniques continue to advance and undergo rigorous clinical validation,they hold the promise of sig-nificantly impacting patient outcomes,ultimately leading to better treatment results and improved quality of life for patients with GC. 展开更多
关键词 Gastric cancer non-invasive DIAGNOSIS imaging PROGNOSIS
下载PDF
Diagnostic value of upper gastrointestinal imaging for duodenal webbing in adults:A case report
8
作者 Kang-Quan Chen Wen-Qian Jiang Xiao-Rong Li 《World Journal of Clinical Cases》 2025年第12期64-69,共6页
BACKGROUND Duodenal web is a rare congenital malformation,exceedingly uncommon in adults,and often misdiagnosed due to the subtle imaging features.CASE SUMMARY By analyzing the clinical diagnosis process and various i... BACKGROUND Duodenal web is a rare congenital malformation,exceedingly uncommon in adults,and often misdiagnosed due to the subtle imaging features.CASE SUMMARY By analyzing the clinical diagnosis process and various imaging findings of a patient from our institution,this case report emphasizes the necessity of upper gastrointestinal series in diagnosing duodenal webs,outlines its typical radiographic features,and provides a literature review on the etiology,clinical presentation,and management of this condition.CONCLUSION This case report emphasizes the necessity of upper gastrointestinal series in diagnosing duodenal webs. 展开更多
关键词 Duodenal web Upper gastrointestinal imaging technology MISDIAGNOSIS medical imaging Case report
下载PDF
AI-Powered Image Security:Utilizing Autoencoders for Advanced Medical Image Encryption
9
作者 Fehaid Alqahtani 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1709-1724,共16页
With the rapid advancement in artificial intelligence(AI)and its application in the Internet of Things(IoT),intelligent technologies are being introduced in the medical field,giving rise to smart healthcare systems.Th... With the rapid advancement in artificial intelligence(AI)and its application in the Internet of Things(IoT),intelligent technologies are being introduced in the medical field,giving rise to smart healthcare systems.The medical imaging data contains sensitive information,which can easily be stolen or tampered with,necessitating secure encryption schemes designed specifically to protect these images.This paper introduces an artificial intelligence-driven novel encryption scheme tailored for the secure transmission and storage of high-resolution medical images.The proposed scheme utilizes an artificial intelligence-based autoencoder to compress high-resolution medical images and to facilitate fast encryption and decryption.The proposed autoencoder retains important diagnostic information even after reducing the image dimensions.The low-resolution images then undergo a four-stage encryption process.The first two encryption stages involve permutation and the next two stages involve confusion.The first two stages ensure the disruption of the structure of the image,making it secure against statistical attacks.Whereas the two stages of confusion ensure the effective concealment of the pixel values making it difficult to decrypt without secret keys.This encrypted image is then safe for storage or transmission.The proposed scheme has been extensively evaluated against various attacks and statistical security parameters confirming its effectiveness in securing medical image data. 展开更多
关键词 Artificial Intelligence image encryption CHAOS medical image encryption
下载PDF
Marine Predators Algorithm with Deep Learning-Based Leukemia Cancer Classification on Medical Images
10
作者 Sonali Das Saroja Kumar Rout +5 位作者 Sujit Kumar Panda Pradyumna Kumar Mohapatra Abdulaziz S.Almazyad Muhammed Basheer Jasser Guojiang Xiong Ali Wagdy Mohamed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期893-916,共24页
In blood or bone marrow,leukemia is a form of cancer.A person with leukemia has an expansion of white blood cells(WBCs).It primarily affects children and rarely affects adults.Treatment depends on the type of leukemia... In blood or bone marrow,leukemia is a form of cancer.A person with leukemia has an expansion of white blood cells(WBCs).It primarily affects children and rarely affects adults.Treatment depends on the type of leukemia and the extent to which cancer has established throughout the body.Identifying leukemia in the initial stage is vital to providing timely patient care.Medical image-analysis-related approaches grant safer,quicker,and less costly solutions while ignoring the difficulties of these invasive processes.It can be simple to generalize Computer vision(CV)-based and image-processing techniques and eradicate human error.Many researchers have implemented computer-aided diagnosticmethods andmachine learning(ML)for laboratory image analysis,hopefully overcoming the limitations of late leukemia detection and determining its subgroups.This study establishes a Marine Predators Algorithm with Deep Learning Leukemia Cancer Classification(MPADL-LCC)algorithm onMedical Images.The projectedMPADL-LCC system uses a bilateral filtering(BF)technique to pre-process medical images.The MPADL-LCC system uses Faster SqueezeNet withMarine Predators Algorithm(MPA)as a hyperparameter optimizer for feature extraction.Lastly,the denoising autoencoder(DAE)methodology can be executed to accurately detect and classify leukemia cancer.The hyperparameter tuning process using MPA helps enhance leukemia cancer classification performance.Simulation results are compared with other recent approaches concerning various measurements and the MPADL-LCC algorithm exhibits the best results over other recent approaches. 展开更多
关键词 Leukemia cancer medical imaging image classification deep learning marine predators algorithm
下载PDF
Fractional-order heterogeneous memristive Rulkov neuronal network and its medical image watermarking application
11
作者 丁大为 牛炎 +4 位作者 张红伟 杨宗立 王金 王威 王谋媛 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期306-314,共9页
This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates... This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates the coexistence of multiple firing patterns through phase diagrams,Lyapunov exponents(LEs),and bifurcation diagrams.Secondly,the parameter related firing behaviors are described through two-parameter bifurcation diagrams.Subsequently,local attraction basins reveal multi-stability phenomena related to initial values.Moreover,the proposed model is implemented on a microcomputer-based ARM platform,and the experimental results correspond to the numerical simulations.Finally,the article explores the application of digital watermarking for medical images,illustrating its features of excellent imperceptibility,extensive key space,and robustness against attacks including noise and cropping. 展开更多
关键词 fractional order MEMRISTORS Rulkov neuron medical image watermarking
下载PDF
Robust zero-watermarking algorithm based on discrete wavelet transform and daisy descriptors for encrypted medical image
12
作者 Yiyi Yuan Jingbing Li +3 位作者 Jing Liu Uzair Aslam Bhatti Zilong Liu Yen-wei Chen 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期40-53,共14页
In the intricate network environment,the secure transmission of medical images faces challenges such as information leakage and malicious tampering,significantly impacting the accuracy of disease diagnoses by medical ... In the intricate network environment,the secure transmission of medical images faces challenges such as information leakage and malicious tampering,significantly impacting the accuracy of disease diagnoses by medical professionals.To address this problem,the authors propose a robust feature watermarking algorithm for encrypted medical images based on multi-stage discrete wavelet transform(DWT),Daisy descriptor,and discrete cosine transform(DCT).The algorithm initially encrypts the original medical image through DWT-DCT and Logistic mapping.Subsequently,a 3-stage DWT transformation is applied to the encrypted medical image,with the centre point of the LL3 sub-band within its low-frequency component serving as the sampling point.The Daisy descriptor matrix for this point is then computed.Finally,a DCT transformation is performed on the Daisy descriptor matrix,and the low-frequency portion is processed using the perceptual hashing algorithm to generate a 32-bit binary feature vector for the medical image.This scheme utilises cryptographic knowledge and zero-watermarking technique to embed watermarks without modifying medical images and can extract the watermark from test images without the original image,which meets the basic re-quirements of medical image watermarking.The embedding and extraction of water-marks are accomplished in a mere 0.160 and 0.411s,respectively,with minimal computational overhead.Simulation results demonstrate the robustness of the algorithm against both conventional attacks and geometric attacks,with a notable performance in resisting rotation attacks. 展开更多
关键词 daisy descriptor DCT DWT encryption domain medical image ZERO-WATERMARKING
下载PDF
A novel medical image data protection scheme for smart healthcare system
13
作者 Mujeeb Ur Rehman Arslan Shafique +6 位作者 Muhammad Shahbaz Khan Maha Driss Wadii Boulila Yazeed Yasin Ghadi Suresh Babu Changalasetty Majed Alhaisoni Jawad Ahmad 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期821-836,共16页
The Internet of Multimedia Things(IoMT)refers to a network of interconnected multimedia devices that communicate with each other over the Internet.Recently,smart healthcare has emerged as a significant application of ... The Internet of Multimedia Things(IoMT)refers to a network of interconnected multimedia devices that communicate with each other over the Internet.Recently,smart healthcare has emerged as a significant application of the IoMT,particularly in the context of knowledge‐based learning systems.Smart healthcare systems leverage knowledge‐based learning to become more context‐aware,adaptable,and auditable while maintain-ing the ability to learn from historical data.In smart healthcare systems,devices capture images,such as X‐rays,Magnetic Resonance Imaging.The security and integrity of these images are crucial for the databases used in knowledge‐based learning systems to foster structured decision‐making and enhance the learning abilities of AI.Moreover,in knowledge‐driven systems,the storage and transmission of HD medical images exert a burden on the limited bandwidth of the communication channel,leading to data trans-mission delays.To address the security and latency concerns,this paper presents a lightweight medical image encryption scheme utilising bit‐plane decomposition and chaos theory.The results of the experiment yield entropy,energy,and correlation values of 7.999,0.0156,and 0.0001,respectively.This validates the effectiveness of the encryption system proposed in this paper,which offers high‐quality encryption,a large key space,key sensitivity,and resistance to statistical attacks. 展开更多
关键词 data analysis medical image processing SECURITY
下载PDF
Research on Multi-Scale Feature Fusion Network Algorithm Based on Brain Tumor Medical Image Classification
14
作者 Yuting Zhou Xuemei Yang +1 位作者 Junping Yin Shiqi Liu 《Computers, Materials & Continua》 SCIE EI 2024年第6期5313-5333,共21页
Gliomas have the highest mortality rate of all brain tumors.Correctly classifying the glioma risk period can help doctors make reasonable treatment plans and improve patients’survival rates.This paper proposes a hier... Gliomas have the highest mortality rate of all brain tumors.Correctly classifying the glioma risk period can help doctors make reasonable treatment plans and improve patients’survival rates.This paper proposes a hierarchical multi-scale attention feature fusion medical image classification network(HMAC-Net),which effectively combines global features and local features.The network framework consists of three parallel layers:The global feature extraction layer,the local feature extraction layer,and the multi-scale feature fusion layer.A linear sparse attention mechanism is designed in the global feature extraction layer to reduce information redundancy.In the local feature extraction layer,a bilateral local attention mechanism is introduced to improve the extraction of relevant information between adjacent slices.In the multi-scale feature fusion layer,a channel fusion block combining convolutional attention mechanism and residual inverse multi-layer perceptron is proposed to prevent gradient disappearance and network degradation and improve feature representation capability.The double-branch iterative multi-scale classification block is used to improve the classification performance.On the brain glioma risk grading dataset,the results of the ablation experiment and comparison experiment show that the proposed HMAC-Net has the best performance in both qualitative analysis of heat maps and quantitative analysis of evaluation indicators.On the dataset of skin cancer classification,the generalization experiment results show that the proposed HMAC-Net has a good generalization effect. 展开更多
关键词 medical image classification feature fusion TRANSFORMER
下载PDF
Importance-aware 3D volume visualization for medical content-based image retrieval-a preliminary study
15
作者 Mingjian LI Younhyun JUNG +1 位作者 Michael FULHAM Jinman KIM 《虚拟现实与智能硬件(中英文)》 EI 2024年第1期71-81,共11页
Background A medical content-based image retrieval(CBIR)system is designed to retrieve images from large imaging repositories that are visually similar to a user′s query image.CBIR is widely used in evidence-based di... Background A medical content-based image retrieval(CBIR)system is designed to retrieve images from large imaging repositories that are visually similar to a user′s query image.CBIR is widely used in evidence-based diagnosis,teaching,and research.Although the retrieval accuracy has largely improved,there has been limited development toward visualizing important image features that indicate the similarity of retrieved images.Despite the prevalence of 3D volumetric data in medical imaging such as computed tomography(CT),current CBIR systems still rely on 2D cross-sectional views for the visualization of retrieved images.Such 2D visualization requires users to browse through the image stacks to confirm the similarity of the retrieved images and often involves mental reconstruction of 3D information,including the size,shape,and spatial relations of multiple structures.This process is time-consuming and reliant on users'experience.Methods In this study,we proposed an importance-aware 3D volume visualization method.The rendering parameters were automatically optimized to maximize the visibility of important structures that were detected and prioritized in the retrieval process.We then integrated the proposed visualization into a CBIR system,thereby complementing the 2D cross-sectional views for relevance feedback and further analyses.Results Our preliminary results demonstrate that 3D visualization can provide additional information using multimodal positron emission tomography and computed tomography(PETCT)images of a non-small cell lung cancer dataset. 展开更多
关键词 Volume visualization DVR medical CBIR RETRIEVAL medical images
下载PDF
A review of medical ocular image segmentation
16
作者 Lai WEI Menghan HU 《虚拟现实与智能硬件(中英文)》 EI 2024年第3期181-202,共22页
Deep learning has been extensively applied to medical image segmentation,resulting in significant advancements in the field of deep neural networks for medical image segmentation since the notable success of U Net in ... Deep learning has been extensively applied to medical image segmentation,resulting in significant advancements in the field of deep neural networks for medical image segmentation since the notable success of U Net in 2015.However,the application of deep learning models to ocular medical image segmentation poses unique challenges,especially compared to other body parts,due to the complexity,small size,and blurriness of such images,coupled with the scarcity of data.This article aims to provide a comprehensive review of medical image segmentation from two perspectives:the development of deep network structures and the application of segmentation in ocular imaging.Initially,the article introduces an overview of medical imaging,data processing,and performance evaluation metrics.Subsequently,it analyzes recent developments in U-Net-based network structures.Finally,for the segmentation of ocular medical images,the application of deep learning is reviewed and categorized by the type of ocular tissue. 展开更多
关键词 medical image segmentation ORBIT TUMOR U-Net Transformer
下载PDF
DCFNet:An Effective Dual-Branch Cross-Attention Fusion Network for Medical Image Segmentation
17
作者 Chengzhang Zhu Renmao Zhang +5 位作者 Yalong Xiao Beiji Zou Xian Chai Zhangzheng Yang Rong Hu Xuanchu Duan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期1103-1128,共26页
Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Trans... Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Transformers have made significant progress.However,there are some limitations in the current integration of CNN and Transformer technology in two key aspects.Firstly,most methods either overlook or fail to fully incorporate the complementary nature between local and global features.Secondly,the significance of integrating the multiscale encoder features from the dual-branch network to enhance the decoding features is often disregarded in methods that combine CNN and Transformer.To address this issue,we present a groundbreaking dual-branch cross-attention fusion network(DCFNet),which efficiently combines the power of Swin Transformer and CNN to generate complementary global and local features.We then designed the Feature Cross-Fusion(FCF)module to efficiently fuse local and global features.In the FCF,the utilization of the Channel-wise Cross-fusion Transformer(CCT)serves the purpose of aggregatingmulti-scale features,and the Feature FusionModule(FFM)is employed to effectively aggregate dual-branch prominent feature regions from the spatial perspective.Furthermore,within the decoding phase of the dual-branch network,our proposed Channel Attention Block(CAB)aims to emphasize the significance of the channel features between the up-sampled features and the features generated by the FCFmodule to enhance the details of the decoding.Experimental results demonstrate that DCFNet exhibits enhanced accuracy in segmentation performance.Compared to other state-of-the-art(SOTA)methods,our segmentation framework exhibits a superior level of competitiveness.DCFNet’s accurate segmentation of medical images can greatly assist medical professionals in making crucial diagnoses of lesion areas in advance. 展开更多
关键词 Convolutional neural networks Swin Transformer dual branch medical image segmentation feature cross fusion
下载PDF
ATFF: Advanced Transformer with Multiscale Contextual Fusion for Medical Image Segmentation
18
作者 Xinping Guo Lei Wang +2 位作者 Zizhen Huang Yukun Zhang Yaolong Han 《Journal of Computer and Communications》 2024年第3期238-251,共14页
Deep convolutional neural network (CNN) greatly promotes the automatic segmentation of medical images. However, due to the inherent properties of convolution operations, CNN usually cannot establish long-distance inte... Deep convolutional neural network (CNN) greatly promotes the automatic segmentation of medical images. However, due to the inherent properties of convolution operations, CNN usually cannot establish long-distance interdependence, which limits the segmentation performance. Transformer has been successfully applied to various computer vision, using self-attention mechanism to simulate long-distance interaction, so as to capture global information. However, self-attention lacks spatial location and high-performance computing. In order to solve the above problems, we develop a new medical transformer, which has a multi-scale context fusion function and can be used for medical image segmentation. The proposed model combines convolution operation and attention mechanism to form a u-shaped framework, which can capture both local and global information. First, the traditional converter module is improved to an advanced converter module, which uses post-layer normalization to obtain mild activation values, and uses scaled cosine attention with a moving window to obtain accurate spatial information. Secondly, we also introduce a deep supervision strategy to guide the model to fuse multi-scale feature information. It further enables the proposed model to effectively propagate feature information across layers, Thanks to this, it can achieve better segmentation performance while being more robust and efficient. The proposed model is evaluated on multiple medical image segmentation datasets. Experimental results demonstrate that the proposed model achieves better performance on a challenging dataset (ETIS) compared to existing methods that rely only on convolutional neural networks, transformers, or a combination of both. The mDice and mIou indicators increased by 2.74% and 3.3% respectively. 展开更多
关键词 medical image Segmentation Advanced Transformer Deep Supervision Attention Mechanism
下载PDF
BeFOI: A Novel Method Based on Conditional Diffusion Model for Medical Image Denoising
19
作者 Huijie Hu Zhen Huang 《Journal of Electronic Research and Application》 2024年第2期158-165,共8页
The progress in medical imaging technology highlights the importance of image quality for effective diagnosis and treatment.Yet,noise during capture and transmission can compromise image accuracy and reliability,compl... The progress in medical imaging technology highlights the importance of image quality for effective diagnosis and treatment.Yet,noise during capture and transmission can compromise image accuracy and reliability,complicating clinical decisions.The rising interest in diffusion models has led to their exploration of denoising images.We present Be-FOI(Better Fluoro Images),a weakly supervised model that uses cine images to denoise fluoroscopic images,both DR types.Trained through precise noise estimation and simulation,BeFOI employs Markov chains to denoise using only the fluoroscopic image as guidance.Our tests show that BeFOI outperforms other methods,reducing noise and enhancing clar-ity and diagnostic utility,making it an effective post-processing tool for medical images. 展开更多
关键词 Diffusion model DENOISING medical images
下载PDF
Collaborations of Industry,Academia,Research and Application Improve the Healthy Development of Medical Imaging Artificial Intelligence Industry in China 被引量:7
20
作者 萧毅 刘士远 《Chinese Medical Sciences Journal》 CAS CSCD 2019年第2期84-88,共5页
In recent years,artificial intelligence (AI) has developed rapidly in the field of medical imaging.However,the collaborations among hospitals,research institutes and enterprises are insufficient at the present,and the... In recent years,artificial intelligence (AI) has developed rapidly in the field of medical imaging.However,the collaborations among hospitals,research institutes and enterprises are insufficient at the present,and there are various issues in technological transformation and value landing of products in this area.To solve the core problems in the developmental path of medical imaging AI,the Chinese Innovative Alliance of Industry,Education,Research and Application of Artificial Intelligence for Medical Imaging compiled the White Paper on Medical Image AI in China.This article introduces the current status of collaboration,the clinical demands for medical imaging AI technique,and the key points in AI technology transformation:robustness,usability and security.We are facing challenges of lacking industry standards,data desensitization standard,assessment system,as well as corresponding regulations and policies to realize the application values of AI products in medical imaging.Further development of AI in medical imaging requires breakthroughs of the core algorithm,deep involvement of doctors,input from capitals,patience from societies,and most importantly,the resolutions from government for multiple difficulties in links of landing the technology. 展开更多
关键词 medical imaging artificial INTELLIGENCE WHITE paper INNOVATIVE ALLIANCE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部