We present a novel optical sensor to acquire simultaneously functional near-infrared imaging(fNIRI)and functional magnetic resonance imaging(fMRI)data with an improved handling and direct localization in the MRI compa...We present a novel optical sensor to acquire simultaneously functional near-infrared imaging(fNIRI)and functional magnetic resonance imaging(fMRI)data with an improved handling and direct localization in the MRI compared to available sensors.Quantitative phantom and interference measurements showed that both methods can be combined without reciprocal adverse effects.The direct localization of the optical sensor on MR images acquired with a T1-weighted echo sequence simplifies the co-registration of NIRI and MRI data.In addition,the optical sensor is simple to attach,which is crucial for measurements on vulnerable subjects.The fNIRI and T2^(*)-weighted fMRI data of a cerebral activation were simultaneously acquired proving the practicability of the setup.展开更多
基金The authors gratefully acknowledge the support of the Swiss National Foundation(National Research Programme NRP 57)and like to thank Andreas Metz for his dedication.We thank Klaas Enno Stephan for supporting this study and Philips Healthcare for technical andfinancial support.We like to address special thanks to Elisabeth Moore from Philips Healthcare for providing and answering questions about the MRI stability test postprocessing software,to Dennis Hueber from ISS Inc.for answering questions about the ISS OxiplexTSTM and to Cornelia Hagmann for proofreading the manuscript.
文摘We present a novel optical sensor to acquire simultaneously functional near-infrared imaging(fNIRI)and functional magnetic resonance imaging(fMRI)data with an improved handling and direct localization in the MRI compared to available sensors.Quantitative phantom and interference measurements showed that both methods can be combined without reciprocal adverse effects.The direct localization of the optical sensor on MR images acquired with a T1-weighted echo sequence simplifies the co-registration of NIRI and MRI data.In addition,the optical sensor is simple to attach,which is crucial for measurements on vulnerable subjects.The fNIRI and T2^(*)-weighted fMRI data of a cerebral activation were simultaneously acquired proving the practicability of the setup.